【題目】如圖所示,拋物線C1:x2=4y,C2:x2=-2py(p>0).點M(x0,y0)在拋物線C2上,過M作C1的切線,切點為A,B(M為原點O時,A,B重合于O).當x0=1-時,切線MA的斜率為-.
(1)求p的值;
(2)當M在C2上運動時,求線段AB中點N的軌跡方程(A,B重合于O時,中點為O).
【答案】(1)2 (2) x2=y
【解析】解:(1)因為拋物線C1:x2=4y上任意一點(x,y)的切線斜率為y′=,且切線MA的斜率為-,
所以A點坐標為.
故切線MA的方程為y=-(x+1)+.
因為點M(1-y0)在切線MA及拋物線C2上,于是
y0=-(2-)+=-, ①
y0=-=-. ②
由①②得p=2.
(2)設N(x,y),A,B,
x1≠x2,由N為線段AB中點知
x=, ③
y=. ④
切線MA,MB的方程為
y=(x-x1)+, ⑤
y=(x-x2)+. ⑥
由⑤⑥得MA,MB的交點M(x0,y0)的坐標為
x0=,y0=.
因為點M(x0,y0)在C2上,
即=-4y0,
所以x1x2=-. ⑦
由③④⑦得
x2=y,x≠0.
當x1=x2時,A,B重合于原點O,AB中點N為O,坐標滿足x2=y.
因此AB中點N的軌跡方程為x2=y.
科目:高中數(shù)學 來源: 題型:
【題目】為了研究一片大約一萬株樹木的生長情況,隨機測量了其中100株樹木的底部周長(單位:cm),根據(jù)所得數(shù)據(jù)畫出的樣本頻率分布直方圖如圖,那么在這片樹木中底部周長大于100cm的株樹大約中( )
A.3000
B.6000
C.7000
D.8000
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=x2﹣2ax+5(a>1).
(1)若函數(shù)f(x)的定義域和值域均為[1,a],求實數(shù)a的值;
(2)若f(x)在區(qū)間(﹣∞,2],上是減函數(shù),且對任意的x1 , x2∈[1,a+1],總有|f(x1)﹣f(x2)|≤4,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】
為慶!2017年中國長春國際馬拉松賽”,某單位在慶祝晚會中進行嘉賓現(xiàn)場抽獎活動.抽獎盒中裝有大小相同的6個小球,分別印有“長春馬拉松”和“美麗長春”兩種標志,搖勻后,規(guī)定參加者每次從盒中同時抽取兩個小球(登記后放回并搖勻),若抽到的兩個小球都印有“長春馬拉松”即可中獎,并停止抽獎,否則繼續(xù),但每位嘉賓最多抽取3次.已知從盒中抽取兩個小球不都是“美麗長春”標志的概率為.
(Ⅰ)求盒中印有“長春馬拉松”標志的小球個數(shù);
(Ⅱ)用η表示某位嘉賓抽獎的次數(shù),求η的分布列和期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的中心在坐標原點,焦點在軸上,橢圓的短軸端點和焦點所組成的四邊形為正方形,且橢圓上任意一點到兩個焦點的距離之和為.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)若直線與橢圓相交于兩點,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】王府井百貨分店今年春節(jié)期間,消費達到一定標準的顧客可進行一次抽獎活動,隨著抽獎活動的有效開展,參與抽獎活動的人數(shù)越來越多,該分店經(jīng)理對春節(jié)前7天參加抽獎活動的人數(shù)進行統(tǒng)計, 表示第天參加抽獎活動的人數(shù),得到統(tǒng)計表格如下:
1 | 2 | 3 | 4 | 5 | 6 | 7 | |
5 | 8 | 8 | 10 | 14 | 15 | 17 |
經(jīng)過進一步統(tǒng)計分析,發(fā)現(xiàn)與具有線性相關關系.
(1)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關于的線性回歸方程;
(2)判斷變量與之間是正相關還是負相關;
(3)若該活動只持續(xù)10天,估計共有多少名顧客參加抽獎.
參與公式: , , .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對于函數(shù)和,若存在常數(shù),對于任意,不等式都成立,則稱直線是函數(shù)的分界線. 已知函數(shù)為自然對數(shù)的底, 為常數(shù)
(1)討論函數(shù)的單調(diào)性;
(2)設,試探究函數(shù)與函數(shù)是否存在“分界線”?若存在,求出分界線方程;若不存在,試說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】函數(shù) 的最小正周期為π,若其圖象向左平移 個單位后得到的函數(shù)為奇函數(shù),則函數(shù)f(x)的圖象( )
A.關于點 對稱
B.關于點 對稱
C.關于直線 對稱
D.關于直線 對稱
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com