【題目】已知函數(shù),.

1函數(shù)區(qū)間是減函數(shù),求實數(shù)取值范圍;

2設(shè)函數(shù)當(dāng)時,成立,求取值范圍.

【答案】1;2.

【解析】

試題分析:1 函數(shù)在區(qū)間函數(shù)等價于在區(qū)間上恒成立,即恒成立,由二次函數(shù)知識可求的范圍;

2,當(dāng)時,成立等價于在區(qū)間上恒成立,求函數(shù)的導(dǎo)數(shù),分類討論研究函數(shù)在區(qū)間的單調(diào)性求之即可.

試題解析:1函數(shù)在區(qū)間函數(shù),則,

恒成立,當(dāng)時,,,①若,,解得;

②若,解得.

上,實數(shù)取值范圍.

2,根據(jù)題意,當(dāng)時,成立,所以.

當(dāng)時,時,成立,所以是增函數(shù),且,所以不符題意.

②當(dāng)時,時,成立,所以是增函數(shù),且以不符題意.

③當(dāng)時,時,恒有,是減函數(shù),于是任意成立要條件是,解得,,綜上,取值范圍是.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在遂寧市中央商務(wù)區(qū)的街道,有一中年人吆喝“送錢”,只見他手拿一黑色小布袋,袋中有3只黃色、2只白色的乒乓球(其體積,質(zhì)地完全相同),旁邊立著一塊小黑板寫道:

摸球方法:從袋中隨機摸出3個球,若摸得統(tǒng)一顏色的3個球,攤主送個摸球者10元錢;若摸得非同一顏色的3個球。摸球者付給攤主2元錢。

(1)摸出的3個球中至少有1個白球的概率是多少?

(2)假定一天中有100人次摸獎,試從概率的角度估算一下這個攤主一個月(按30天計)能賺多少錢?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了在夏季降溫和冬季供暖時減少能源損耗,房屋的屋頂和外墻需要建造隔熱層,某幢建筑物要建造可使用20年的隔熱層,每厘米厚的隔熱層建造成本為6萬元,該建筑物每年的能源消耗費用C(單位:萬元)與隔熱層厚度x(單位:cm)滿足關(guān)系:C(x) (0≤x≤10),若不建隔熱層,每年能源消耗費用為8萬元.設(shè)f(x)為隔熱層建造費用與20年的能源消耗費用之和.

(1)k的值及f(x)的表達(dá)式;

(2)隔熱層修建多厚時,總費用f(x)達(dá)到最小,并求最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的定義域為[-1,5],部分對應(yīng)值如下表,的導(dǎo)函數(shù)的圖象如圖所示,下列關(guān)于的命題:

-1

0

4

5

1

2

2

1

①函數(shù)的極大值點為0,4;

②函數(shù)在[0,2]上是減函數(shù);

③如果當(dāng)時,的最大值是2,那么的最大值為4;

④當(dāng)時,函數(shù)有4個零點.

其中正確命題的序號是__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的幾何體中,四邊形為矩形,直線平面,,,,點在棱上.

(1)求證:

(2)若的中點,求異面直線所成角的余弦值;

(3)若,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知一個八面體各棱長均為1,四邊形ABCD為正方形,則下列命題中不正確的是

A. 不平行的兩條棱所在直線所成的角為 B. 四邊形AECF為正方形

C. A到平面BCE的距離為 D. 該八面體的頂點在同一個球面上

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 的離心率,左、右焦點分別為, ,點滿足: 在線段的中垂線上.

(Ⅰ)求橢圓的方程;

(Ⅱ)若斜率為)的直線軸、橢圓順次相交于點、、,且,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中.

(1)若在區(qū)間上具有相同的單調(diào)性,求實數(shù)的取值范圍;

(2)若,且函數(shù)的最小值為,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直三棱柱中, 是線段上一點.

點.

(1)確定的位置,使得平面平面;

(2)若平面,設(shè)二面角的大小為,求證:

查看答案和解析>>

同步練習(xí)冊答案