設(shè){an}遞增等差數(shù)列,前三項(xiàng)的和為12,前三項(xiàng)的積為48,則它的首項(xiàng)是(  )
A.1B.2C.4D.6
B
本題考查等差數(shù)列通項(xiàng)公式和基本運(yùn)算.
設(shè)公差為
又(1),(2)得解得因?yàn)閿?shù)列是遞增等差數(shù)列,所以故選B
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)已知函數(shù)f(x)=x3x2-2.
(1)設(shè){an}是正數(shù)組成的數(shù)列,前n項(xiàng)和為Sn,其中a1=3.若點(diǎn)(anan+12-2an+1)(n∈N*)在函數(shù)yf′(x)的圖象上,求證:點(diǎn)(n,Sn)也在yf′(x)的圖象上;
(2)求函數(shù)f(x)在區(qū)間(a-1,a)內(nèi)的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)(1)為等差數(shù)列{an}的前n項(xiàng)和,,,求.
(2)在等比數(shù)列中,的范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知數(shù)列的前項(xiàng)和和通項(xiàng)滿足數(shù)列中,

(1)求數(shù)列,的通項(xiàng)公式;
(2)數(shù)列滿足是否存在正整數(shù),使得時(shí)恒成立?若存在,求的最小值;若不存在,試說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)遞增等差數(shù)列的前項(xiàng)和為,已知的等比中項(xiàng),
(I)求數(shù)列的通項(xiàng)公式
(II)求數(shù)列的前項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)數(shù)列是等差數(shù)列,是各項(xiàng)都為正數(shù)的等比數(shù)列,且,
,
(1)求,的通項(xiàng)公式;
(2)數(shù)列的前項(xiàng)和為,證明

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分15分)已知各項(xiàng)均不相等的等差數(shù)列的前四項(xiàng)和,且成等比.
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)設(shè)為數(shù)列的前n項(xiàng)和,若對一切恒成立,求實(shí)數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分13分)
設(shè)數(shù)列滿足>0,,其前n 項(xiàng)和為,且

(1)  求之間的關(guān)系,并求數(shù)列的通項(xiàng)公式;
(2)  令
求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

數(shù)列{an}中,Sn是其前n項(xiàng)的和,若a1=1,an+1Sn(n≥1),則an    

查看答案和解析>>

同步練習(xí)冊答案