(2011•浙江)已知拋物線C1:x2=y,圓C2:x2+(y﹣4)2=1的圓心為點M
(1)求點M到拋物線C1的準(zhǔn)線的距離;
(2)已知點P是拋物線C1上一點(異于原點),過點P作圓C2的兩條切線,交拋物線C1于A,B兩點,若過M,P兩點的直線l垂直于AB,求直線l的方程.
(1)    (2)
(1)由題意畫出簡圖為:
由于拋物線C1:x2=y準(zhǔn)線方程為:y=﹣,圓C2:x2+(y﹣4)2=1的圓心M(0,4),
利用點到直線的距離公式可以得到距離d==
(2)設(shè)點P(x0,x02),A(x1,x12),B(x2,x22);
由題意得:x0≠0,x2≠±1,x1≠x2,
設(shè)過點P的圓c2的切線方程為:y﹣x02=k(x﹣x0)即y=kx﹣kx0+x02
,即(x02﹣1)k2+2x0(4﹣x02)k+(x02﹣4)2﹣1=0
設(shè)PA,PB的斜率為k1,k2(k1≠k2),則k1,k2應(yīng)該為上述方程的兩個根,
,;
代入①得:x2﹣kx+kx0﹣x02="0" 則x1,x2應(yīng)為此方程的兩個根,
故x1=k1﹣x0,x2=k2﹣x0
∴kAB=x1+x2=k1+k2﹣2x0=
由于MP⊥AB,∴kAB•KMP=﹣1⇒
故P
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知定點與分別在軸、軸上的動點滿足:,動點滿足
(1)求動點的軌跡的方程;
(2)設(shè)過點任作一直線與點的軌跡交于兩點,直線與直線分別交于點為坐標(biāo)原點);
(i)試判斷直線與以為直徑的圓的位置關(guān)系;
(ii)探究是否為定值?并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知點C(1,0),點A、B是⊙O:x2+y2=9上任意兩個不同的點,且滿足·=0,設(shè)P為弦AB的中點.

(1)求點P的軌跡T的方程;
(2)試探究在軌跡T上是否存在這樣的點:它到直線x=-1的距離恰好等于到點C的距離?若存在,求出這樣的點的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓C1和拋物線C2有公共焦點F(1,0),C1的中心和C2的頂點都在坐標(biāo)原點,過點M(4,0)的直線l與拋物線C2分別相交于A ,B兩點.
(1)如圖所示,若,求直線l的方程;
(2)若坐標(biāo)原點O關(guān)于直線l的對稱點P在拋物線C2上,直線l與橢圓C1有公共點,求橢圓C1的長軸長的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若直線與拋物線相交于,兩點,且,兩點在拋物線的準(zhǔn)線上的射影分別是,,若,則的值是           

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

拋物線上一點到直線的距離與到點的距離之差的最大值為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

過拋物線的焦點作直線交拋物線于兩點,線段的中點的縱坐標(biāo)為2,則線段長為        

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)拋物線的頂點在原點,準(zhǔn)線方程為x=2,則拋物線的方程為        .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

圓錐曲線 (t為參數(shù))的焦點坐標(biāo)是            .

查看答案和解析>>

同步練習(xí)冊答案