【題目】在平面直角坐標(biāo)系中, 圓 的內(nèi)切圓.其中.

(1)求圓的方程及 點(diǎn)坐標(biāo);

(2)在直線 上是否存在異于的定點(diǎn)使得對(duì)圓上任意一點(diǎn),都有為常數(shù) )?若存在,求出點(diǎn) 的坐標(biāo)及的值;若不存在,請(qǐng)說明理由.

【答案】(1),;(2).

【解析】

1)圓的圓心為,利用點(diǎn)到直線距離公式,求得半徑,得到圓的方程,再由線段、線段均與圓相切,得到點(diǎn);

2)假設(shè)存在為常數(shù) ),設(shè),幾何關(guān)系坐標(biāo)化,轉(zhuǎn)化成恒成立問題,進(jìn)而得到,分別代入并進(jìn)行檢驗(yàn),得到定點(diǎn).

1)由知直線的方程為,

由于圓與線段相切,所以半徑即圓的方程為.

由題意與線段相切,所以線段的方程為,即.

與線段也相切,所以線段的方程為,即.

2)設(shè),則,,

若在直線上存在異于的定點(diǎn),使得對(duì)圓上任意一點(diǎn),

都有為常數(shù) ),等價(jià)于,

對(duì)圓上任意點(diǎn)恒成立.

整理得:

因?yàn)辄c(diǎn)在直線上,所以,由于在圓上,所以.

對(duì)任意恒成立,

所以顯然,所以

因?yàn)?/span>,解得:;

當(dāng)時(shí),此時(shí)重合,舍去.

當(dāng)時(shí),

綜上,存在滿足條件的定點(diǎn),此時(shí).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若,討論的單調(diào)性;

(2)若,且對(duì)于函數(shù)的圖象上兩點(diǎn) ,存在,使得函數(shù)的圖象在處的切線.求證;.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右焦點(diǎn)分別為,,若橢圓經(jīng)過點(diǎn),且的面積為.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)設(shè)斜率為的直線與以原點(diǎn)為圓心,半徑為的圓交于,兩點(diǎn),與橢圓交于,兩點(diǎn),且,當(dāng)取得最小值時(shí),求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,已知曲線的參數(shù)方程為為參數(shù)),以原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為:,直線的極坐標(biāo)方程為

(Ⅰ)寫出曲線的極坐標(biāo)方程,并指出它是何種曲線;

(Ⅱ)設(shè)與曲線交于,兩點(diǎn),與曲線交于兩點(diǎn),求四邊形面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在十九大“建設(shè)美麗中國”的號(hào)召下,某省級(jí)生態(tài)農(nóng)業(yè)示范縣大力實(shí)施綠色生產(chǎn)方案,對(duì)某種農(nóng)產(chǎn)品的生產(chǎn)方式分別進(jìn)行了甲、乙兩種方案的改良。為了檢查甲、乙兩種方案的改良效果,隨機(jī)在這兩種方案中各任意抽取了40件產(chǎn)品作為樣本逐件稱出它們的重量(單位:克),重量值落在之間的產(chǎn)品為合格品,否則為不合格品。下表是甲、乙兩種方案樣本頻數(shù)分布表。

產(chǎn)品重量

甲方案頻數(shù)

乙方案頻數(shù)

6

2

8

12

14

18

8

6

4

2

(1)根據(jù)上表數(shù)據(jù)求甲(同組中的重量值用組中點(diǎn)數(shù)值代替)方案樣本中40件產(chǎn)品的平均數(shù)和中位數(shù)

(2)由以上統(tǒng)計(jì)數(shù)據(jù)完成下面列聯(lián)表,并回答有多大把握認(rèn)為“產(chǎn)品是否為合格品與改良方案的選擇有關(guān)”.

甲方案

乙方案

合計(jì)

合格品

不合格品

合計(jì)

參考公式,其中.

臨界值表

0.100

0.050

0.025

0.010

0.001

2.706

3.814

5.024

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從星期一到星期六安排甲、乙、丙三人值班,每人值2天班,如果甲不安排在星期一,乙不安排在星期六,那么值班方案種數(shù)為 .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)若恒成立,求實(shí)數(shù)的值;

(Ⅱ)存在,且,,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐中,底面 ABCD為矩形,側(cè)面為正三角形,且平面平面 EPD 中點(diǎn),AD=2.

(1)證明平面AEC丄平面PCD;

(2)若二面角的平面角滿足,求四棱錐 的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義域和值域均為(常數(shù))的函數(shù)y=g(x)的圖像如圖所示,給出下列四個(gè)命題:

1)方程有且僅有三個(gè)解;

2)方程有且僅有三個(gè)解;

3)方程有且僅有九個(gè)解;

4)方程有且僅有一個(gè)解;

那么,其中正確命題的個(gè)數(shù)是(

A. 1B. 2C. 3D. 4

查看答案和解析>>

同步練習(xí)冊(cè)答案