【題目】在平面直角坐標(biāo)系中,曲線C的參數(shù)方程為(為參數(shù)).以坐標(biāo)原點O為極,z軸正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.
(Ⅰ)求曲線C的普通方程和直線的直角坐標(biāo)方程;
(Ⅱ)設(shè)點.若直線與曲線C相交于A,B兩點,求的值.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),為的導(dǎo)函數(shù),為自然對數(shù)的底數(shù).
(1)求的值;
(2)求證:;
(3)若對恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,一個湖的邊界是圓心為的圓,湖的一側(cè)有一條直線型公路,湖上有橋(是圓的直徑).規(guī)劃在公路上選兩個點,,并修建兩段直線型道路,,規(guī)劃要求:線段,上的所有點到點的距離均不小于圓的半徑.已知點,到直線的距離分別為和(,為垂足),測得,,(單位:百米).
(1)若道路與橋垂直,求道路的長;
(2)在規(guī)劃要求下,和中能否有一個點選在處?并說明理由;
(3)在規(guī)劃要求下,若道路和的長度均為(單位:百米),求當(dāng)最小時,、兩點間的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐中,平面ABCD,底面四邊形ABCD為等腰梯形,且,E,F分別為AB,PD的中點.
(1)求證:;
(2)求點C到平面DEF的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)各項均為正數(shù)的數(shù)列{an}的前n項和為Sn,已知a1=1,且anSn+1﹣an+1Sn=an+1﹣λan,對一切n∈N*都成立.
(1)當(dāng)λ=1時;
①求數(shù)列{an}的通項公式;
②若bn=(n+1)an,求數(shù)列{bn}的前n項的和Tn;
(2)是否存在實數(shù)λ,使數(shù)列{an}是等差數(shù)列如果存在,求出λ的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),().
(Ⅰ)若函數(shù)有且只有一個零點,求實數(shù)的取值范圍;
(Ⅱ)設(shè),若,若函數(shù)對恒成立,求實數(shù)的取值范圍.(是自然對數(shù)的底數(shù),)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量 = (1,2sinθ),= (sin(θ+),1),θR。
(1) 若⊥,求 tanθ的值;
(2) 若∥,且 θ (0,),求 θ的值
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com