【題目】北京市為了緩解交通壓力,計(jì)劃在某路段實(shí)施“交通限行”,為調(diào)查公眾對(duì)該路段“交通限行”的態(tài)度,某機(jī)構(gòu)從經(jīng)過該路段的人員中隨機(jī)抽查了80人進(jìn)行調(diào)查,將調(diào)查情況進(jìn)行整理,制成表:
年齡(歲) | [15,30) | [30,45) | [45,60) | [60,75) |
人數(shù) | 24 | 26 | 16 | 14 |
贊成人數(shù) | 12 | 14 | x | 3 |
(1)若經(jīng)過該路段的人員對(duì)“交通限行”的贊成率為0.40,求x的值;
(2)在(1)的條件下,若從年齡在[45,60),[60,75)內(nèi)的兩組贊成“交通限行”的人中在隨機(jī)選取2人進(jìn)行進(jìn)一步的采訪,求選中的2人中至少有1人來自[60,75)內(nèi)的概率.
【答案】
(1)解:經(jīng)過該路段的人員中對(duì)“交通限行”贊成的人數(shù)為12+14+x+3,
因?yàn)闃颖局械馁澇陕蕿?.40,所以 =0.40,解得x=3.
(2)解:記“選中的2人中至少有1人來自[60,75)內(nèi)”為事件M.
設(shè)年齡在[45,60)內(nèi)的3為調(diào)查者分別為A,B,C,年齡在[60,75)內(nèi)的3為調(diào)查者分別為a,b,c,
則從這6位被調(diào)查者中抽出2人的情況有:
{a,b},{a,c},{a,A},{a,B},{a,C},{b,c},{b,A},{b,B},{b,C},{c,A},{c,B},{c,C},{A,B},{A,C},{B,C},
共15個(gè)基本事件,且每個(gè)基本事件等可能發(fā)生.
其中事件M包括{a,b},{a,c},{a,A},{a,B},{a,C},{b,c},{b,A},{b,B},{b,C},{c,A},{c,B},{c,C},共12個(gè)基本事件.
所以選中的2人中至少有1人來自[60,75)內(nèi)的概率P(M)= .
【解析】(1)經(jīng)過該路段的人員中對(duì)“交通限行”贊成的人數(shù)為12+14+x+3,由此利用樣本中的贊成率為0.40,能求出x的值.(2)記“選中的2人中至少有1人來自[60,75)內(nèi)”為事件M,設(shè)年齡在[45,60)內(nèi)的3為調(diào)查者分別為A,B,C,年齡在[60,75)內(nèi)的3為調(diào)查者分別為a,b,c,由此利用列舉法能求出選中的2人中至少有1人來自[60,75)內(nèi)的概率P(M).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某班有學(xué)生50人,其中男同學(xué)30人,用分層抽樣的方法從該班抽取5人去參加某社區(qū)服務(wù)活動(dòng).
(1)求從該班男女同學(xué)在各抽取的人數(shù);
(2)從抽取的5名同學(xué)中任選2名談此活動(dòng)的感受,求選出的2名同學(xué)中恰有1名男同學(xué)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知偶函數(shù)f(x)和奇函數(shù)g(x)的定義域都是(﹣4,4),且在(﹣4,0]上的圖象如圖所示,則關(guān)于x的不等式f(x)g(x)<0的解集是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,有一塊半徑為2的半圓形鋼板,計(jì)劃剪裁成等腰梯形ABCD的形狀,它的下底AB是⊙O的直徑,上底CD的端點(diǎn)在圓周上.設(shè)∠DAB=θ(0<θ< ),L為等腰梯形ABCD的周長(zhǎng).
(1)求周長(zhǎng)L與θ的函數(shù)解析式;
(2)試問周長(zhǎng)L是否存在最大值?若存在,請(qǐng)求出最大值,并指出此時(shí)θ的大小;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地政府落實(shí)黨中央“精準(zhǔn)扶貧”政策,解決一貧困山村的人畜用水困難,擬修建一個(gè)底面為正方形(由地形限制邊長(zhǎng)不超過10m)的無蓋長(zhǎng)方體蓄水池,設(shè)計(jì)蓄水量為800m3 . 已知底面造價(jià)為160元/m2 , 側(cè)面造價(jià)為100元/m2 . (I)將蓄水池總造價(jià)f(x)(單位:元)表示為底面邊長(zhǎng)x(單位:m)的函數(shù);
(II)運(yùn)用函數(shù)的單調(diào)性定義及相關(guān)知識(shí),求蓄水池總造價(jià)f(x)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】綜合題
(1)解不等式:3≤x2﹣2x<8;
(2)已知a,b,c,d均為實(shí)數(shù),求證:(a2+b2)(c2+d2)≥(ac+bd)2 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在區(qū)間D上,如果函數(shù)f(x)為減函數(shù),而xf(x)為增函數(shù),則稱f(x)為D上的弱減函數(shù).若f(x)=
(1)判斷f(x)在區(qū)間[0,+∞)上是否為弱減函數(shù);
(2)當(dāng)x∈[1,3]時(shí),不等式 恒成立,求實(shí)數(shù)a的取值范圍;
(3)若函數(shù)g(x)=f(x)+k|x|﹣1在[0,3]上有兩個(gè)不同的零點(diǎn),求實(shí)數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系內(nèi),已知A(3,3)是⊙C上一點(diǎn),折疊該圓兩次使點(diǎn)A分別與圓上不相同的兩點(diǎn)(異于點(diǎn)A)重合,兩次的折痕方程分別為x﹣y+1=0和x+y﹣7=0,若⊙C上存在點(diǎn)P,使∠MPN=90°,其中M、N的坐標(biāo)分別為(﹣m,0)(m,0),則m的最大值為( )
A.4
B.5
C.6
D.7
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com