【題目】已知偶函數(shù)f(x)和奇函數(shù)g(x)的定義域都是(﹣4,4),且在(﹣4,0]上的圖象如圖所示,則關(guān)于x的不等式f(x)g(x)<0的解集是

【答案】(﹣4,﹣2)∪(0,2)
【解析】解:設(shè)h(x)=f(x)g(x),則h(﹣x)=f(﹣x)g(﹣x)=﹣f(x)g(x)=﹣h(x),

∴h(x)是奇函數(shù),

由圖象可知:當(dāng)﹣4<x<﹣2時(shí),f(x)>0,g(x)<0,即h(x)>0,

當(dāng)0<x<2時(shí),f(x)<0,g(x)>0,即h(x)<0,

∴h(x)<0的解為(﹣4,﹣2)∪(0,2).

所以答案是(﹣4,﹣2)∪(0,2)

【考點(diǎn)精析】本題主要考查了奇偶性與單調(diào)性的綜合的相關(guān)知識(shí)點(diǎn),需要掌握奇函數(shù)在關(guān)于原點(diǎn)對(duì)稱的區(qū)間上有相同的單調(diào)性;偶函數(shù)在關(guān)于原點(diǎn)對(duì)稱的區(qū)間上有相反的單調(diào)性才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在三棱錐P﹣ABC中,PA=PB=PC= ,側(cè)棱PA與底面ABC所成的角為60°,則該三棱錐外接球的體積為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,內(nèi)角A,B,C對(duì)邊的邊長(zhǎng)分別是a,b,c,已知c=2,
(1)若△ABC的面積等于 ,求a,b;
(2)若sinB=2sinA,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè){an}是公比q>1的等比數(shù)列,若a2005和a2006是方程4x2﹣8x+3=0的兩個(gè)根,則a2007+a2008=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知一組數(shù)據(jù)x1 , x2 , x3 , x4 , x5的平均數(shù)是2,方差是 ,那么另一組數(shù)據(jù)3x1﹣2,3x2﹣2,3x3﹣2, 3x4﹣2,3x5﹣2的平均數(shù)和方差分別是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一輛汽車在某段路程中的行駛速率與時(shí)間的關(guān)系如圖所示.
(1)求圖中陰影部分的面積,并說明所求面積的實(shí)際含義;
(2)假設(shè)這輛汽車在行駛該段路程前里程表的讀數(shù)是8018km,試求汽車在行駛這段路程時(shí)里程表讀數(shù)s(km)與時(shí)間t (h)的函數(shù)解析式,并作出相應(yīng)的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】記[x]表示不超過x的最大整數(shù),如[1.2]=1,[0.5]=0,則方程[x]﹣x=lnx的實(shí)數(shù)根的個(gè)數(shù)為(
A.0
B.1
C.2
D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】北京市為了緩解交通壓力,計(jì)劃在某路段實(shí)施“交通限行”,為調(diào)查公眾對(duì)該路段“交通限行”的態(tài)度,某機(jī)構(gòu)從經(jīng)過該路段的人員中隨機(jī)抽查了80人進(jìn)行調(diào)查,將調(diào)查情況進(jìn)行整理,制成表:

年齡(歲)

[15,30)

[30,45)

[45,60)

[60,75)

人數(shù)

24

26

16

14

贊成人數(shù)

12

14

x

3


(1)若經(jīng)過該路段的人員對(duì)“交通限行”的贊成率為0.40,求x的值;
(2)在(1)的條件下,若從年齡在[45,60),[60,75)內(nèi)的兩組贊成“交通限行”的人中在隨機(jī)選取2人進(jìn)行進(jìn)一步的采訪,求選中的2人中至少有1人來自[60,75)內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{bn}的前n項(xiàng)和是Sn , 且bn=1﹣2Sn , 又?jǐn)?shù)列{an}、{bn}滿足點(diǎn){an , 3 }在函數(shù)y=( x的圖象上.
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)若cn=anbn+ ,求數(shù)列{an}的前n項(xiàng)和Tn

查看答案和解析>>

同步練習(xí)冊(cè)答案