已知、分別是橢圓的左、右焦點(diǎn),右焦點(diǎn)到上頂點(diǎn)的距離為2,若.

(Ⅰ)求此橢圓的方程;

(Ⅱ)點(diǎn)是橢圓的右頂點(diǎn),直線與橢圓交于兩點(diǎn)(在第一象限內(nèi)),又是此橢圓上兩點(diǎn),并且滿足,求證:向量共線.

 

【答案】

(Ⅰ);(Ⅱ)詳見(jiàn)解析.

【解析】

試題分析:(Ⅰ)求此橢圓的方程,由題意到上頂點(diǎn)的距離為2,即,再由,即可求出,從而得橢圓的方程;(Ⅱ)求證:向量共線,即證,由于點(diǎn)是橢圓的右頂點(diǎn),可得,直線與橢圓交于、兩點(diǎn)(在第一象限內(nèi)),可由,解得,得,只需求出直線的斜率,由題意,而的平分線平行,可得的平分線垂直于軸,設(shè)的斜率為,則的斜率;因此的方程分別為:;其中;分別代入橢圓方程,得的表達(dá)式,從而可得直線的斜率,從而可證.

試題解析:(Ⅰ)由題知:

(Ⅱ)因?yàn)椋?img src="http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/2014041204394367304314/SYS201404120440185948554646_DA.files/image020.png">,從而的平分線平行,

所以的平分線垂直于軸;

不妨設(shè)的斜率為,則的斜率;因此的方程分別為:、;其中; 由得;,因?yàn)?img src="http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/2014041204394367304314/SYS201404120440185948554646_DA.files/image037.png">在橢圓上;所以是方程的一個(gè)根;

從而;     同理:;得,

從而直線的斜率;又、;所以;所以所以向量共線.

考點(diǎn):橢圓方程,直線與橢圓位置關(guān)系.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2011屆陜西省師大附中、西工大附中高三第六次聯(lián)考理數(shù) 題型:解答題

(本題滿分13分)
已知、分別是橢圓的左、右焦點(diǎn)。
(I)若是第一象限內(nèi)該橢圓上的一點(diǎn),,求點(diǎn)P的坐標(biāo);
(II)設(shè)過(guò)定點(diǎn)M(0,2)的直線與橢圓交于不同的兩點(diǎn)A、B,且為銳角(其中為坐標(biāo)原點(diǎn)),求直線的斜率的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年云南省畢業(yè)生復(fù)習(xí)第二次統(tǒng)一檢測(cè)理科數(shù)學(xué)試卷(解析版) 題型:解答題

已知、分別是橢圓: 的左、右焦點(diǎn),點(diǎn)在直線上,線段的垂直平分線經(jīng)過(guò)點(diǎn).直線與橢圓交于不同的兩點(diǎn)、,且橢圓上存在點(diǎn),使,其中是坐標(biāo)原點(diǎn),是實(shí)數(shù).

(Ⅰ)求的取值范圍;

(Ⅱ)當(dāng)取何值時(shí),的面積最大?最大面積等于多少?

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014屆陜西省西安市高二上學(xué)期期末考試?yán)砜茢?shù)學(xué)卷(解析版) 題型:解答題

已知、分別是橢圓的左、右焦點(diǎn)。

(1)若是第一象限內(nèi)該橢圓上的一點(diǎn),,求點(diǎn)P的坐標(biāo);

(2)設(shè)過(guò)定點(diǎn)M(0,2)的直線與橢圓交于不同的兩點(diǎn)A、B,且為銳角(其中為坐標(biāo)原點(diǎn)),求直線的斜率的取值范圍。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014屆山東省濟(jì)寧市高二3月月考數(shù)學(xué)理科試卷(解析版) 題型:選擇題

已知點(diǎn)分別是橢圓的左、右焦點(diǎn),過(guò)且垂直于軸的直線與橢圓交于A、B兩點(diǎn),若為正三角形,則該橢圓的離心率是(     )

A.             B.               C.               D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年江西省高三模擬考試?yán)砜茢?shù)學(xué) 題型:解答題

(12分)已知、分別是橢圓的左、右焦點(diǎn),點(diǎn)B是其上頂點(diǎn),橢圓的右準(zhǔn)線與軸交于點(diǎn)N,且。

(1)求橢圓方程;

(2)直線與橢圓交于不同的兩點(diǎn)M、Q,若△BMQ是以MQ為底邊的等腰三角形,求的值。

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案