如圖,已知四棱錐,底面是等腰梯形,且中點,平面中點.

(1)證明:平面平面;(2)求點到平面的距離.

(1)詳見解析;(2)

解析試題分析:(1)根據(jù)中位線可得,從而可證得∥平面。證四邊形為平行四邊形可得∥平面,從而可證得平面平面。(2)根據(jù)已知條件可得三棱錐的體積,根據(jù)體積轉化發(fā)即可求得點到平面的距離。
試題解析:(1) 證明:由題意,=
∴四邊形為平行四邊形,所以.
又∵, ∴
平面,平面 ∴∥平面  4分
同理,∥平面,又
∴平面∥平面.            6分
(2)設求點到平面的距離為.
因為V三棱錐A-PCD= V三棱錐P-ACD
.      12分
考點:1線線平行、線面平行;2點到面的距離。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

(12分)(2011•陜西)如圖,在△ABC中,∠ABC=45°,∠BAC=90°,AD是BC上的高,沿AD把是BC上的△ABD折起,使∠BDC=90°.

(Ⅰ)證明:平面ADB⊥平面BDC;
(Ⅱ)設BD=1,求三棱錐D﹣ABC的表面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,直三棱柱中, ,  ,的中點,△是等腰三角形,的中點,上一點.

(1)若∥平面,求;
(2)平面將三棱柱分成兩個部分,求較小部分與較大部分的體積之比.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在四棱錐中,底面為直角梯形,且,平面底面,的中點,是棱的中點,.

(1)求證:平面;
(2)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖1,在直角梯形中,,.把沿折起到的位置,使得點在平面上的正投影恰好落在線段上,如圖2所示,點分別為棱的中點.

(1)求證:平面平面
(2)求證:平面;
(3)若,求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,直三棱柱ABCA′B′C′,∠BAC=90°,AB=AC=,AA′=1,點M,N分別為
A′B和B′C′的中點.

(1)證明:MN∥平面A′ACC′;
(2)求三棱錐A′MNC的體積.(錐體體積公式V=Sh,其中S為底面面積,h為高)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖甲,是邊長為6的等邊三角形,分別為靠近的三等分點,點為邊邊的中點,線段交線段于點.將沿翻折,使平面平面,連接,形成如圖乙所示的幾何體.

(1)求證:平面
(2)求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,矩形所在的平面和平面互相垂直,等腰梯形中,,=2,,,,分別為,的中點,為底面的重心.

(1)求證:平面平面;
(2)求證: ∥平面
(3)求多面體的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在三棱錐中,都是以為斜邊的等腰直角三角形,分別是的中點.

(1)證明:平面//平面;
(2)證明:;
(3)若,求三棱錐的體積.

查看答案和解析>>

同步練習冊答案