如圖甲,是邊長(zhǎng)為6的等邊三角形,分別為靠近的三等分點(diǎn),點(diǎn)為邊邊的中點(diǎn),線段交線段于點(diǎn).將沿翻折,使平面平面,連接,形成如圖乙所示的幾何體.
(1)求證:平面
(2)求四棱錐的體積.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,四棱錐P-ABCD中,底面ABCD為正方形,DA⊥面ABP,AB=1,PA=2,∠PAB=600,E為PA的中點(diǎn),F為PC上不同于P、C的任意一點(diǎn).
(1)求證:PC∥面EBD
(2)求異面直線AC與PB間的距離
(3)求三棱錐E-BDF的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,垂直于矩形所在平面,,.
(1)求證:;
(2)若矩形的一個(gè)邊,,則另一邊的長(zhǎng)為何值時(shí),三棱錐的體積為?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,已知四棱錐,底面是等腰梯形,且∥,是中點(diǎn),平面,, 是中點(diǎn).
(1)證明:平面平面;(2)求點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,一簡(jiǎn)單組合體的一個(gè)面ABC內(nèi)接于圓O,AB是圓O的直徑,四邊形DCBE為平行四邊形,且DC平面ABC.
(1)證明:平面ACD平面;
(2)若,,,試求該簡(jiǎn)單組合體的體積V.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在邊長(zhǎng)為a的正三角形鐵皮的三個(gè)角切去三個(gè)全等的四邊形,再把它的邊沿虛線折起(如圖),做成一個(gè)無(wú)蓋的正三角形底鐵皮箱,當(dāng)箱底邊長(zhǎng)為多少時(shí),箱子容積最大?最大容積是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖所示,直三棱柱ABCA1B1C1中,D,E分別是AB,BB1的中點(diǎn).
(1)證明:BC1∥平面A1CD;
(2)設(shè)AA1=AC=CB=2,AB=2,求三棱錐CA1DE的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在直棱柱ABCA1B1C1中,∠BAC=90°,AB=AC=,AA1=3,D是BC的中點(diǎn),點(diǎn)E在棱BB1上運(yùn)動(dòng).
(1)證明:AD⊥C1E;
(2)當(dāng)異面直線AC,C1E所成的角為60°時(shí),求三棱錐C1A1B1E的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖a,在直角梯形ABCD中,AB⊥AD,AD∥BC,F(xiàn)為AD的中點(diǎn),E在BC上,且EF∥AB.已知AB=AD=CE=2,沿線EF把四邊形CDFE折起如圖b,使平面CDFE⊥平面ABEF.
(1)求證:AB⊥平面BCE;
(2)求三棱錐C ADE體積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com