如圖a,在直角梯形ABCD中,AB⊥AD,AD∥BC,F(xiàn)為AD的中點(diǎn),E在BC上,且EF∥AB.已知AB=AD=CE=2,沿線EF把四邊形CDFE折起如圖b,使平面CDFE⊥平面ABEF.

(1)求證:AB⊥平面BCE;
(2)求三棱錐C ­ADE體積.

(1)見解析  (2) 

解析(1)證明:在題圖a中,EF∥AB,AB⊥AD,
∴EF⊥AD,在題圖b中,CE⊥EF,又平面CDFE⊥平面ABEF,且平面CDFE∩平面ABEF=EF,
CE⊥平面ABEF,AB?平面ABEF,∴CE⊥AB,又∵AB⊥BE,BE∩CE=E,∴AB⊥平面BCE;
(2)解:∵平面CDFE⊥平面ABEF,且平面CDFE∩平面ABEF=EF,AF⊥FE,AF?平面ABEF,∴AF⊥平面CDEF,∴AF為三棱錐A ­CDE的高,且AF=1,又∵AB=CE=2,∴SCDE×2×2=2,
∴VC ­ADE·SCDE·AF=×2×1=.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖甲,是邊長為6的等邊三角形,分別為靠近的三等分點(diǎn),點(diǎn)為邊邊的中點(diǎn),線段交線段于點(diǎn).將沿翻折,使平面平面,連接,形成如圖乙所示的幾何體.

(1)求證:平面
(2)求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖(1)所示,⊙O的直徑AB=4,點(diǎn)C,D為⊙O上兩點(diǎn),且∠CAB=45°,∠DAB=60°,F(xiàn)為的中點(diǎn).沿直徑AB折起,使兩個(gè)半圓所在平面互相垂直(如圖(2)所示).
 
(1)求證:OF∥平面ACD;
(2)在上是否存在點(diǎn)G,使得FG∥平面ACD?若存在,試指出點(diǎn)G的位置,并求點(diǎn)G到平面ACD的距離;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在三棱錐中,都是以為斜邊的等腰直角三角形,分別是的中點(diǎn).

(1)證明:平面//平面;
(2)證明:;
(3)若,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在三棱柱ABCA1B1C1中,CACB,ABAA1,∠BAA1=60°.

(1)證明:ABA1C;
(2)若ABCB=2,A1C,求三棱柱ABCA1B1C1的體積;
(3)若平面ABC⊥平面AA1B1BABCB=2,求直線A1C與平面BB1C1C所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在三棱柱ABC-A1B1C1中,C1C⊥底面ABC,AC=BC=CC1=2,AC⊥BC,點(diǎn)D是AB的中點(diǎn).

(1)求證:AC1∥平面CDB1;
(2)求三棱錐D-B1C1C的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

請您設(shè)計(jì)一個(gè)帳篷,它下部的形狀是高為1m正六棱柱,上部的形狀是側(cè)棱長為3m的正六棱錐(如圖所示)。試問當(dāng)帳篷的頂點(diǎn)O到底面中心O1的距離為多少時(shí),帳篷的體積最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,四棱錐中,底面是菱形,,,的中點(diǎn),點(diǎn)在側(cè)棱上.

(1)求證:⊥平面;
(2)若的中點(diǎn),求證://平面;
(3)若,試求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知梯形ABCD中,AD∥BC,∠ABC =∠BAD =,AB=BC=2AD=4,E、F分別是AB、CD上的點(diǎn),EF∥BC,AE = x,G是BC的中點(diǎn)。沿EF將梯形ABCD翻折,使平面AEFD⊥平面EBCF (如圖) .

(1) 當(dāng)x=2時(shí),求證:BD⊥EG ;
(2) 若以F、B、C、D為頂點(diǎn)的三棱錐的體積記為f(x),求f(x)的最大值;
(3) 當(dāng)f(x)取得最大值時(shí),求二面角D-BF-C的余弦值.

查看答案和解析>>

同步練習(xí)冊答案