(12分)(2011•陜西)如圖,在△ABC中,∠ABC=45°,∠BAC=90°,AD是BC上的高,沿AD把是BC上的△ABD折起,使∠BDC=90°.

(Ⅰ)證明:平面ADB⊥平面BDC;
(Ⅱ)設(shè)BD=1,求三棱錐D﹣ABC的表面積.

(Ⅰ)見(jiàn)解析(Ⅱ)

解析試題分析:(Ⅰ)翻折后,直線AD與直線DC、DB都垂直,可得直線與平面BDC垂直,再結(jié)合AD是平面ADB內(nèi)的直線,可得平面ADB與平面垂直;
(Ⅱ)根據(jù)圖形特征可得△ADB、△DBC、△ADC是全等的等腰直角三角形,△ABC是等邊三角形,利用三角形面積公式可得三棱錐D﹣ABC的表面積.
解:(Ⅰ)∵折起前AD是BC邊上的高,
∴當(dāng)△ABD折起后,AD⊥DC,AD⊥DB,
又DB∩DC=D,
∴AD⊥平面BDC,
∵AD?平面ABD.
∴平面ADB⊥平面BDC
(Ⅱ)由(Ⅰ)知,DA⊥DB,DB⊥DC,DC⊥DA,
∵DB=DA=DC=1,∴AB=BC=CA=
從而

所以三棱錐D﹣ABC的表面積為:

點(diǎn)評(píng):解決平面圖形翻折問(wèn)題的關(guān)鍵是看準(zhǔn)翻折后沒(méi)有發(fā)生變化的位置關(guān)系,抓住翻折后仍然垂直的直線作為條件,從而解決問(wèn)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,多面體的直觀圖及三視圖如圖所示,分別為的中點(diǎn).
(1)求證:平面;
(2)求多面體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在斜三棱柱中,平面平面ABC,,.
(1)求證:;
(2)若,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,已知四棱錐P﹣ABCD的底面是直角梯形,∠ABC=∠BCD=90°,AB=BC=2CD=2,PB=PC=3,側(cè)面PBC⊥底面ABCD,O是BC的中點(diǎn).
(1)求證:DC∥平面PAB;
(2)求四棱錐P﹣ABCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,四棱錐P-ABCD中,底面ABCD為正方形,DA⊥面ABP,AB=1,PA=2,∠PAB=600,E為PA的中點(diǎn),F為PC上不同于P、C的任意一點(diǎn).
(1)求證:PC∥面EBD
(2)求異面直線AC與PB間的距離
(3)求三棱錐E-BDF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,底面是邊長(zhǎng)為2的菱形,且,以為底面分別作相同的正三棱錐,且.

(1)求證:平面;
(2)求多面體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,已知四棱錐,底面是等腰梯形,且,中點(diǎn),平面,, 中點(diǎn).

(1)證明:平面平面;(2)求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

將函數(shù)與y=3的圖象所圍成的封閉圖形繞x軸旋轉(zhuǎn)一周,則所得旋轉(zhuǎn)體的表
面積為    .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在斜二測(cè)畫(huà)法下,四邊形A′B′C′D′是下底角為45°的等腰梯形,其下底長(zhǎng)為5,一腰長(zhǎng)為,則原四邊形的面積是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案