(本小題共12分)直四棱柱
中,底面是邊長為
的正方形,側(cè)棱長為4。
(1)求證:平面
平面
;
(2)求點
到平面
的距離d;
(3)求三棱錐
的體積V。
解:(2)
(3)
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(示范性高中做)
已知正方體
的棱長為1,點
是棱
的中點,點
是棱
的中點,點
是上底面
的中心.
(Ⅰ)求證:
MO∥平面
NBD;(Ⅱ)求二面角
的大小;
(Ⅲ)求三棱錐
的體積.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(13分)如圖,已知正三棱柱
的底面正三角形的邊長是2,D是
的中點,直線
與側(cè)面
所成的角是
.
⑴求二面角
的大。
⑵求點
到平面
的距離.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖,圓柱
內(nèi)有一個三棱柱
,三棱柱的底面為圓柱底面的內(nèi)接三角形,且AB是圓O直徑。
(Ⅰ)證明:平面
平面
;
(Ⅱ)設(shè)AB=
,在圓柱
內(nèi)隨機選取一點,記該點取自于三棱柱
內(nèi)的概率為
。
(i)當點C在圓周上運動時,求
的最大值;
(ii)記平面
與平面
所成的角為
,當
取最大值時,求
的值。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(10分)在四棱錐
P—ABCD中,底面
ABCD是
a的正方形,
PA⊥平面
ABCD,
且
PA=2
AB(1)求證:平面
PAC⊥平面
PBD;
(2)求二面角
B—PC—D的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
本題滿分15分)如圖,在矩形
中,點
分別
在線段
上,
.沿直線
將
翻折成
,使平面
.
(Ⅰ)求二面角
的余弦值;
(Ⅱ)點
分別在線段
上,若沿直線
將四
邊形
向上翻折,使
與
重合,求線段
的長。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
斜三棱柱ABC- A1B1C1中,二面角C-A1A-B為120°,側(cè)棱AA1于另外兩條棱的距離分別為7cm、8cm,AA1=12cm,則斜三棱柱的側(cè)面積為______ .
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
如圖,正方體
的棱長為3,點
在
上,且
,點
在平面
上,且動點
到直線
的距離與
到點
的距離相等,在平面直角坐標系
中,動點
的軌跡方程是
查看答案和解析>>