等差數(shù)列{an}中,a7=4,a19=2a9.
(1)求{an}的通項(xiàng)公式;
(2)設(shè)bn,求數(shù)列{bn}的前n項(xiàng)和Sn.
(1)an(2)
(1)設(shè)等差數(shù)列{an}的公差為d,則an=a1+(n-1)d.
因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041108498836.png" style="vertical-align:middle;" />所以.
解得a1=1,d=.所以{an}的通項(xiàng)公式為an.
(2)bn
所以Sn
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知等差數(shù)列的公差不為零,其前n項(xiàng)和為,若=70,且成等比數(shù)列,
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè)數(shù)列的前n項(xiàng)和為,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

正項(xiàng)數(shù)列{an}的前項(xiàng)和滿足:-(n2+n-1)Sn-(n2+n)=0.
(1)求數(shù)列{an}的通項(xiàng)公式an;
(2)令bn,數(shù)列{bn}的前n項(xiàng)和為Tn.證明:對(duì)于任意的n∈N*,都有Tn<.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知數(shù)列{an}的前n項(xiàng)和為Sn,且滿足Sn-Sn-1+2SnSn-1=0(n≥2),a1.
(1)求證:是等差數(shù)列;
(2)求an的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知各項(xiàng)均為正數(shù)的等比數(shù)列{an}的公比為q,且0<q<.
(1)在數(shù)列{an}中是否存在三項(xiàng),使其成等差數(shù)列?說明理由;
(2)若a1=1,且對(duì)任意正整數(shù)k,ak-(ak+1+ak+2)仍是該數(shù)列中的某一項(xiàng).
(ⅰ)求公比q;
(ⅱ)若bn=-logan+1(+1),Sn=b1+b2+…+bn,Tr=S1+S2+…+Sn,試用S2011表示T2011.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知an
(1)求數(shù)列{an}的前10項(xiàng)和S10;
(2)求數(shù)列{an}的前2k項(xiàng)和S2k.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=ax2+bx(a≠0)的導(dǎo)函數(shù)f′(x)=-2x+7,數(shù)列{an}的前n項(xiàng)和為Sn,點(diǎn)Pn(n,Sn)(n∈N*)均在函數(shù)y=f(x)的圖象上,求數(shù)列{an}的通項(xiàng)公式及Sn的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知等差數(shù)列{an}的前n項(xiàng)和為Sn,a4=15,S5=55,則數(shù)列{an}的公差是(  )
A.B.4C.-4D.-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)Sn為等差數(shù)列{an}的前n項(xiàng)和,S8=4a3,a7=-2,則a9=________.

查看答案和解析>>

同步練習(xí)冊(cè)答案