【題目】已知函數(shù),當(dāng)時,取得極小值.
(1)求的值;
(2)記,設(shè)是方程的實數(shù)根,若對于定義域中任意的,.當(dāng)且時,問是否存在一個最小的正整數(shù),使得恒成立,若存在請求出的值;若不存在請說明理由.
(3)設(shè)直線,曲線.若直線與曲線同時滿足下列條件:
①直線與曲線相切且至少有兩個切點;
②對任意都有.則稱直線與曲線的“上夾線”.
試證明:直線是曲線的“上夾線”.
【答案】(1),;(2)答案見解析;(3)證明見解析.
【解析】
(1)由題意可得,,據(jù)此可得的值,然后驗證所得的結(jié)果滿足題意即可;(2)首先由函數(shù)的單調(diào)性確定的值,然后求得函數(shù)的最大值和最小值,結(jié)合恒成立的條件即可確定的值; (3)由題意首先證得直線與曲線相切且至少有兩個切點,然后令,,易證明,據(jù)此即可證明直線是曲線的“上夾線”.
(1)由已知,于是得:,
代入可得:,.
此時,.所以.
當(dāng)時,;當(dāng)時,.
所以當(dāng)時,取得極小值,即,符合題意.
(2),則.所以單調(diào)遞增,又.
為的根,即,也即.
,.
,
所以存在這樣最小正整數(shù)使得恒成立.
(3)由,得 ,
當(dāng)時,.
此時,
所以是直線與曲線的一個切點,
當(dāng),此時,.
所以也是直線與曲線的一個切點,
即直線與曲線相切且至少有兩個切點,
對任意,.
即,因此直線是曲線的“上夾線”.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知動點到定直線:的距離比到定點的距離大2.
(1)求動點的軌跡的方程;
(2)在軸正半軸上,是否存在某個確定的點,過該點的動直線與曲線交于,兩點,使得為定值.如果存在,求出點坐標(biāo);如果不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,等高的正三棱錐P-ABC與圓錐SO的底面都在平面M上,且圓O過點A,又圓O的直徑AD⊥BC,垂足為E,設(shè)圓錐SO的底面半徑為1,圓錐體積為。
(1)求圓錐的側(cè)面積;
(2)求異面直線AB與SD所成角的大;
(3)若平行于平面M的一個平面N截得三棱錐與圓錐的截面面積之比為,求三棱錐的側(cè)棱PA與底面ABC所成角的大小。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C過點,且與圓外切于點,過點作圓C的兩條切線PM,PN,切點為M,N.
(1)求圓C的標(biāo)準(zhǔn)方程;
(2)試問直線MN是否恒過定點?若過定點,請求出定點坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】南北朝時期杰出的數(shù)學(xué)家祖沖之的兒子祖暅在數(shù)學(xué)上也有很多創(chuàng)造,其最著名的成就是祖暅原理:夾在兩個平行平面之間的幾何體,被平行于這兩個平面的任意平面所截,如果截得的兩個截面的面積總相等,那么這兩個幾何體的體積相等,現(xiàn)有一個圓柱體和一個長方體,它們的底面面積相等,高也相等,若長方體的底面周長為,圓柱體的體積為,根據(jù)祖暅原理,可推斷圓柱體的高( )
A.有最小值B.有最大值C.有最小值D.有最大值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中.
(Ⅰ)討論的單調(diào)性;
(Ⅱ)當(dāng)時,證明:;
(Ⅲ)求證:對任意正整數(shù),都有 (其中為自然對數(shù)的底數(shù)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某大學(xué)畢業(yè)生參加一個公司的招聘考試,考試分筆試和面試兩個環(huán)節(jié),筆試有、兩個題目,該學(xué)生答對、兩題的概率分別為、,兩題全部答對方可進(jìn)入面試.面試要回答甲、乙兩個問題,該學(xué)生答對這兩個問題的概率均為,至少答對一個問題即可被聘用,若只答對一問聘為職員,答對兩問聘為助理(假設(shè)每個環(huán)節(jié)的每個題目或問題回答正確與否是相互獨立的).
(1)求該學(xué)生被公司聘用的概率;
(2)設(shè)該學(xué)生應(yīng)聘結(jié)束后答對的題目或問題的總個數(shù)為,求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com