已知中心在坐標(biāo)原點(diǎn),焦點(diǎn)在軸上的橢圓過點(diǎn),且它的離心率.
 
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)與圓相切的直線交橢圓于兩點(diǎn),若橢圓上一點(diǎn)滿足,求實(shí)數(shù)的取值范圍.
(1);(2).

試題分析:(1)設(shè)橢圓的標(biāo)準(zhǔn)方程為,由已知得,解出即可求得a,b;
(2)由直線l:y=kx+t與圓(x+1)2+y2=1相切,可得k,t的關(guān)系式①,把y=kx+t代入
消掉y得x的二次方程,設(shè)M(x1,y1),N(x2,y2),由
得λ=(x1+x2,y1+y2),代入韋達(dá)定理可求得C點(diǎn)坐標(biāo),把點(diǎn)C代入橢圓方程可用k,t表示出λ,再由①式消掉k得關(guān)于t的函數(shù),由t2范圍可求得λ2的范圍,進(jìn)而求得λ的范圍;.
試題解析:(1)設(shè)橢圓的標(biāo)準(zhǔn)方程為
由已知得:解得,所以橢圓的標(biāo)準(zhǔn)方程為:
(2)因?yàn)橹本:與圓相切所以,
代入并整理得:┈7分
設(shè),則有

因?yàn)?,所以,
又因?yàn)辄c(diǎn)在橢圓上,所以,
因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043814614442.png" style="vertical-align:middle;" />所以
所以,所以的取值范圍為
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

橢圓以雙曲線的實(shí)軸為短軸、虛軸為長軸,且與拋物線交于兩點(diǎn).
(1)求橢圓的方程及線段的長;
(2)在圖像的公共區(qū)域內(nèi),是否存在一點(diǎn),使得的弦的弦相互垂直平分于點(diǎn)?若存在,求點(diǎn)坐標(biāo),若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若一個橢圓長軸的長度、短軸的長度和焦距成等差數(shù)列,則該橢圓的離心率是(   )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)分別為橢圓:的左右頂點(diǎn),為右焦點(diǎn),在點(diǎn)處的切線,上異于的一點(diǎn),直線,中點(diǎn),有如下結(jié)論:①平分;②與橢圓相切;③平分;④使得的點(diǎn)不存在.其中正確結(jié)論的序號是_____________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如果表示焦點(diǎn)在軸上的橢圓,那么實(shí)數(shù)的取值范圍是(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

過橢圓的焦點(diǎn)垂直于軸的弦長為,則雙曲線的離心率的值是(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知點(diǎn)為橢圓的左焦點(diǎn),點(diǎn)為橢圓上任意一點(diǎn),點(diǎn)的坐標(biāo)為,則取最大值時(shí),點(diǎn)的坐標(biāo)為           

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)是橢圓上兩點(diǎn),點(diǎn)關(guān)于軸的對稱點(diǎn)為(異于點(diǎn)),若直線分別交軸于點(diǎn),則(     )
A.0B.1C.D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

過橢圓的一個焦點(diǎn)作垂直于實(shí)軸的弦,是另一焦點(diǎn),若∠,則橢圓的離心率等于(    )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案