【題目】在正方體ABCDA1B1C1D1中,M為DD1的中點,O為四邊形ABCD的中心,P為棱A1B1上任一點,則異面直線OP與MA所成的角為( )
A.30°
B.45°
C.60°
D.90°
【答案】D
【解析】解:∵A1B1⊥面ADD1A1 , AM面ADD1A1 , ∴A1B1⊥AM.
設(shè)點O與A1B1確定的平面為α,α∩AD=F且α∩BC=E,則F、E為AD、BC的中點,
根據(jù)正方形的性質(zhì),可得AM⊥A1F.
∵A1F∩A1B1=A1 , A1F、A1B1平面面A1FEB1 , ∴AM⊥面A1FEB1 ,
又∵OP面A1FEB1 , ∴AM⊥OP.
即直線OP與直線AM所成的角是90°.
故選:D
【考點精析】解答此題的關(guān)鍵在于理解異面直線及其所成的角的相關(guān)知識,掌握異面直線所成角的求法:1、平移法:在異面直線中的一條直線中選擇一特殊點,作另一條的平行線;2、補形法:把空間圖形補成熟悉的或完整的幾何體,如正方體、平行六面體、長方體等,其目的在于容易發(fā)現(xiàn)兩條異面直線間的關(guān)系.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在R的函數(shù)f(x)= 是奇函數(shù),其中a,b為實數(shù)
(1)求a,b的值
(2)用定義證明f(x)在R上是減函數(shù)
(3)若對于任意的t∈[﹣3,3],不等式f(t2﹣2t)+f(﹣2t2+k)<0恒成立,求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的最大值為2.
(Ⅰ)求函數(shù)在上的單調(diào)遞減區(qū)間;
(Ⅱ)中,角,,所對的邊分別是,,,且,,若,求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列結(jié)論正確的個數(shù)是( )
①命題“所有的四邊形都是矩形”是特稱命題;
②命題“x∈R,x2+2<0”是全稱命題;
③若p:x∈R,x2+4x+4≤0,則q:x∈R,x2+4x+4≤0是全稱命題.
A.0
B.1
C.2
D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市為了鼓勵市民節(jié)約用電,實行“階梯式”電價,將該市每戶居民的月用電量劃分為三檔,月用電量不超過200度的部分按0.5元/度收費,超過200度但不超過400度的部分按0.8元/度收費,超過400度的部分按1.0元/度收費.
(1)求某戶居民用電費用(單位:元)關(guān)于月用電量(單位:度)的函數(shù)解析式;
(2)為了了解居民的用電情況,通過抽樣,獲得了今年1月份100戶居民每戶的用電量,統(tǒng)計分析后得到如圖所示的頻率分布直方圖,若這100戶居民中,今年1月份用電費用不超過260元的點80%,求的值;
(3)在滿足(2)的條件下,估計1月份該市居民用戶平均用電費用(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=alnx,g(x)=x2 . 其中x∈R.
(1)若曲線y=f(x)與y=g(x)在x=1處的切線相互平行,求兩平行直線間的距離;
(2)若f(x)≤g(x)﹣1對任意x>0恒成立,求實數(shù)a的值;
(3)當(dāng)a<0時,對于函數(shù)h(x)=f(x)﹣g(x)+1,記在h(x)圖象上任取兩點A、B連線的斜率為kAB , 若|kAB|≥1,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨機觀測生產(chǎn)某種零件的某工廠25名工人的日加工零件數(shù)(單位:件),獲得數(shù)據(jù)如下:
30,42,41,36,44,40,37,37,25,45,29,43,31,36,49,34,33,43,38,42,32,34,46,39,36.
根據(jù)上述數(shù)據(jù)得到樣本的頻率分布表如下:
分組 | 頻數(shù) | 頻率 |
[25,30] | 3 | 0.12 |
(30,35] | 5 | 0.20 |
(35,40] | 8 | 0.32 |
(40,45] | n1 | f1 |
(45,50] | n2 | f2 |
(1)確定樣本頻率分布表中n1 , n2 , f1和f2的值;
(2)根據(jù)上述頻率分布表,畫出樣本頻率分布直方圖;
(3)根據(jù)樣本頻率分布直方圖,求在該廠任取4人,至少有1人的日加工零件數(shù)落在區(qū)間(30,35]的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】各項均為非負(fù)整數(shù)的數(shù)列同時滿足下列條件:
① ;② ;③是的因數(shù)().
(Ⅰ)當(dāng)時,寫出數(shù)列的前五項;
(Ⅱ)若數(shù)列的前三項互不相等,且時, 為常數(shù),求的值;
(Ⅲ)求證:對任意正整數(shù),存在正整數(shù),使得時, 為常數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com