【題目】已知函數(shù)

(1)當(dāng)時(shí),求函數(shù)的最小值

(2)若函數(shù)的最小值為,令,求的取值范圍.

【答案】(1);(2).

【解析】

試題分析:(1)當(dāng)時(shí),易求得的解析式,為分段函數(shù),由解析式易得當(dāng)時(shí),;(2)根據(jù)題意可求得的解析式,也是一分段函數(shù),從而可求得其最小值為,根據(jù)題意,即可求得的取值范圍.

試題解析: (1).................2分

.................3分

.................4分

所以;.................5分

(2) .................6分

當(dāng).................7分

當(dāng).................8分

當(dāng).................9分

所以..................10分

,所以當(dāng)時(shí);當(dāng)時(shí);當(dāng)時(shí);

從而得.................12分

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】求適合下列條件的直線方程:

(1)經(jīng)過(guò)點(diǎn)P(3,2)且在兩坐標(biāo)軸上的截距相等;

(2)經(jīng)過(guò)點(diǎn)A(-1,-3),傾斜角等于直線y=3x的傾斜角的2倍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直三棱柱中,,的中點(diǎn),是等腰三角形,的中點(diǎn),上一點(diǎn)

I平面,求;

II平面將三棱柱分成兩個(gè)部分,求較小部分與較大部分的體積之比

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)

1)求的單調(diào)區(qū)間;

2)若為整數(shù), 且當(dāng)時(shí),, 的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

1)當(dāng)時(shí),求函數(shù)在區(qū)間上的最大值與最小值;

2)若在上存在,使得成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)當(dāng)時(shí),若在區(qū)間上的最小值為,求的取值范圍;

(2)若對(duì)任意,且恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知焦點(diǎn)在軸的橢圓的離心率與雙曲線的離心率互為倒數(shù),且過(guò)點(diǎn).

1求橢圓方程;

2若直線與橢圓交于不同的兩點(diǎn),點(diǎn),有,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1的切線與直線平行,求的值;

2不等式對(duì)于的一切值恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知某服裝廠每天的固定成本是30000元,每天最大規(guī)模的生產(chǎn)量是.每生產(chǎn)一件服裝,成本增加100元,生產(chǎn)服裝的收入函數(shù)是,記分別為每天生產(chǎn)服裝的利潤(rùn)和平均利潤(rùn)

1當(dāng)時(shí),每天生產(chǎn)量為多少時(shí),利潤(rùn)有最大值;

2每天生產(chǎn)量為多少時(shí),平均利潤(rùn)有最大值,并求的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案