已知數(shù)列{an}滿足:a1=
12
,anan-1-2an+1=0(n≥2).
(1)求a2,a3,a4的值;
(2)猜想數(shù)列{an}的一個通項公式,并用數(shù)學歸納法證明你的結論.
分析:(1)由a1=
1
2
,anan-1-2an+1=0(n≥2),代入n=2,3,4,5計算,可求a2,a3,a4,a5的值;
(2)猜想{an}的通項公式,再用數(shù)學歸納法證明,關鍵是假設當n=k(k≥1)時,命題成立,即成立,利用遞推式,證明當n=k+1時,等式成立.
解答:解:(1)由a1=
1
2
,anan-1-2an+1=0(n≥2),得a2=
2
3
,a3=
3
4
,a4=
4
5
,a5=
5
6

(2)由以上結果猜測:an=
n
n+1
用數(shù)學歸納法證明如下:
①當n=1時,左邊=a1=
1
2
,右邊=
1
1+1
=
1
2
,等式成立.
②假設當n=k(k≥1)時,命題成立,即ak=
k
k+1
成立.
那么,當n=k+1時,ak+1ak-2ak+1+1=0,所以ak+1
k
k+1
-2ak+1+1=0,解得ak+1=
k+1
k+2

這就是說,當n=k+1時等式成立.
由①和②,可知猜測an=對于任意正整數(shù)n都成立.(12分)
點評:本題考查數(shù)列的通項,考查歸納猜想,考查數(shù)學歸納法的運用,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}滿足:a1=1且an+1=
3+4an
12-4an
, n∈N*

(1)若數(shù)列{bn}滿足:bn=
1
an-
1
2
(n∈N*)
,試證明數(shù)列bn-1是等比數(shù)列;
(2)求數(shù)列{anbn}的前n項和Sn;
(3)數(shù)列{an-bn}是否存在最大項,如果存在求出,若不存在說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}滿足
1
2
a1+
1
22
a2+
1
23
a3+…+
1
2n
an=2n+1
則{an}的通項公式
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}滿足:a1=
3
2
,且an=
3nan-1
2an-1+n-1
(n≥2,n∈N*).
(1)求數(shù)列{an}的通項公式;
(2)證明:對于一切正整數(shù)n,不等式a1•a2•…an<2•n!

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}滿足an+1=|an-1|(n∈N*
(1)若a1=
54
,求an;
(2)若a1=a∈(k,k+1),(k∈N*),求{an}的前3k項的和S3k(用k,a表示)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•北京模擬)已知數(shù)列{an}滿足an+1=an+2,且a1=1,那么它的通項公式an等于
2n-1
2n-1

查看答案和解析>>

同步練習冊答案