【題目】若α∈[0,π],β∈[﹣ , ],λ∈R,且(α﹣ )3﹣cosα﹣2λ=0,4β3+sinβcosβ+λ=0,則cos( +β)的值為( )
A.0
B.
C.
D.
【答案】D
【解析】解:∵4β3+sinβcosβ+λ=0,∴(﹣2β)3﹣2sinβcosβ﹣2λ=0,即 (﹣2β)3+sin(﹣2β )﹣2λ=0.
再由(α﹣ )3﹣cosα﹣2λ=0,可得(α﹣ )3 +sin(α﹣ )﹣2λ=0.
故﹣2β和α﹣ 是方程 x3+sinx﹣2λ=0 的兩個實數解.
再由α∈[0,π],β∈[﹣ , ],所以 ﹣α 和2β的范圍都是[﹣ , ],
由于函數 x3+sinx 在[﹣ , ]上單調遞增,故方程 x3+sinx﹣2λ=0在[﹣ , ]上只有一個解,
所以, ﹣α=2β,所以 +β= ,所以cos( +β)= .
故選:D.
【考點精析】解答此題的關鍵在于理解兩角和與差的余弦公式的相關知識,掌握兩角和與差的余弦公式:.
科目:高中數學 來源: 題型:
【題目】高考復習經過二輪“見多識廣”之后,為了研究考前“限時搶分”強化訓練次數與答題正確率﹪的關系,對某校高三某班學生進行了關注統(tǒng)計,得到如下數據:
1 | 2 | 3 | 4 | |
20 | 30 | 50 | 60 |
(1)求關于的線性回歸方程,并預測答題正確率是100﹪的強化訓練次數;
(2)若用表示統(tǒng)計數據的“強化均值”(精確到整數),若“強化均值”的標準差在區(qū)間內,則強化訓練有效,請問這個班的強化訓練是否有效?
附:回歸直線的斜率和截距的最小二乘法估計公式分別為:
=, =- ,
樣本數據的標準差為:
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】函數f(x)=mx2﹣2x+1有且僅有一個為正實數的零點,則實數m的取值范圍是( )
A.(﹣∞,1]
B.(﹣∞,0]∪{1}
C.(﹣∞,0)∪(0,1]
D.(﹣∞,1)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,橢圓C的參數方程為(θ為參數),直線l的參數方程為(t為參數).
(Ⅰ)寫出橢圓C的普通方程和直線l的傾斜角;
(Ⅱ)若點P(1,2),設直線l與橢圓C相交于A,B兩點,求|PA|·|PB|的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,橢圓: 的離心率為,直線l:y=2上的點和橢圓上的點的距離的最小值為1.
(Ⅰ) 求橢圓的方程;
(Ⅱ) 已知橢圓的上頂點為A,點B,C是上的不同于A的兩點,且點B,C關于原點對稱,直線AB,AC分別交直線l于點E,F.記直線與的斜率分別為, .
① 求證: 為定值;
② 求△CEF的面積的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某市為了制定合理的節(jié)電方案,供電局對居民用電進行了調查,通過抽樣,獲得了某年200戶居民每戶的月均用電量(單位:度),將數據按照, , , , , , , , 分成9組,制成了如圖所示的頻率分布直方圖.
(Ⅰ)求直方圖中的值并估計居民月均用電量的中位數;
(Ⅱ)現從第8組和第9組的居民中任選取2戶居民進行訪問,則兩組中各有一戶被選中的概率.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com