【題目】設(shè)集合I={1,2,3,4,5},選擇I的兩個非空子集A和B,要使B中最小的數(shù)大于A中最大的數(shù),則不同的選擇方法共有

A.50種 B.49種 C.48種 D.47種

【答案】B

【解析】

試題分析:集合A、B中沒有相同的元素,且都不是空集,

從5個元素中選出2個元素,有=10種選法,小的給A集合,大的給B集合;

從5個元素中選出3個元素,有=10種選法,再分成1、2兩組,較小元素的一組給A集合,較大元素的一組的給B集合,共有2×10=20種方法;

從5個元素中選出4個元素,有=5種選法,再分成1、3;2、2;3、1兩組,較小元素的一組給A集合,較大元素的一組的給B集合,共有3×5=15種方法;

從5個元素中選出5個元素,有=1種選法,再分成1、4;2、3;3、2;4、1兩組,較小元素的一組給A集合,較大元素的一組的給B集合,共有4×1=4種方法;

總計為10+20+15+4=49種方法

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】在一次籃球定點投籃訓練中,規(guī)定每人最多投3次.在處每投進一球得3分;在處每投進一球得2分.如果前兩次得分之和超過3分就停止投籃;否則投第三次. 某同學在處的投中率,在處的投中率為.該同學選擇先在處投一球,以后都在處投,且每次投籃都互不影響.用表示

該同學投籃訓練結(jié)束后所得的總分,其分布列為:

0

2

3

4

5

0.03

(1)求的值;

(2)求隨機變量的數(shù)學期望

(3)試比較該同學選擇上述方式投籃得分超過3分與選擇都在處投籃得分超過3分的概率的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)的圖象上有一點列,點軸上的射影是,且 (), .

(1)求證: 是等比數(shù)列,并求出數(shù)列的通項公式;

(2)對任意的正整數(shù),當時,不等式恒成立,求實數(shù)的取值范圍.

(3)設(shè)四邊形的面積是,求證: .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知四棱錐P-ABCD的底面是邊長為1的正方形,且側(cè)棱PC底面ABCD,且PC=2,E是側(cè)棱PC上的動點

(1)求四棱錐P-ABCD的體積;

(2)證明:BDAE。

(3)求二面角P-BD-C的正切值。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓,點是直線上的一動點,過點作圓的切線,切點為

(1)當切線的長度為時,求點的坐標;

(2)若的外接圓為圓,試問:當在直線上運動時,圓是否過定點?若存在,求出所有的定點的坐標;若不存在,說明理由.

(3)求線段長度的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)函數(shù)

1時,設(shè),求證:對任意的,

2時,若對任意,不等式恒成立,求實數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1討論的單調(diào)性;

2恒成立,求實數(shù)的最大值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在棱長為1的正方體中,點,分別是棱的中點,是側(cè)面內(nèi)一點,若平面,則線段長度的取值范圍是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某地區(qū)有小學21所,中學14所,大學7所,現(xiàn)采用分層抽樣的方法從這些學校中抽取6所學校對學生進行視力調(diào)查.

(1)求應(yīng)從小學、中學、大學中分別抽取的學校數(shù)目;

(2)若從抽取的6所學校中隨機抽取2所學校做進一步數(shù)據(jù)分析,

列出所有可能的抽取結(jié)果;

求抽取的2所學校均為小學的概率.

查看答案和解析>>

同步練習冊答案