【題目】已知a>0且a≠1,函數(shù)f(x)=a 有最大值,則不等式loga(x2﹣5x+7)>0的解集為

【答案】(2,3)
【解析】解:設(shè)t=lg(x2﹣2x+3)=lg[(x﹣1)2+2]≥lg2,
若a>1,則f(x)≥alg2 , 此時(shí)函數(shù)有最小值,不滿足條件.
若0<a<1,則f(x)≤alg2 , 此時(shí)函數(shù)有最大值,滿足條件.
則不等式loga(x2﹣5x+7)>0等價(jià)為0<x2﹣5x+7<1,

,
解得2<x<3,
即不等式的解集為(2,3),
所以答案是:(2,3)
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解指、對(duì)數(shù)不等式的解法的相關(guān)知識(shí),掌握指數(shù)不等式的解法規(guī)律:根據(jù)指數(shù)函數(shù)的性質(zhì)轉(zhuǎn)化;對(duì)數(shù)不等式的解法規(guī)律:根據(jù)對(duì)數(shù)函數(shù)的性質(zhì)轉(zhuǎn)化.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)f(x)=|lgx|,且0<a<b<c時(shí),有f(a)>f(c)>f(b),則(
A.(a﹣1)(c﹣1)>0
B.ac>1
C.ac=1
D.ac<1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在銳角三角形中,若,則的取值范圍是__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若f(x)為二次函數(shù),﹣1和3是方程f(x)﹣x﹣4=0的兩根,f(0)=1
(1)求f(x)的解析式;
(2)若在區(qū)間[﹣1,1]上,不等式f(x)>2x+m有解,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某車間生產(chǎn)某種產(chǎn)品,固定成本是萬元,每生產(chǎn)件產(chǎn)品成本增加元,根據(jù)經(jīng)驗(yàn),當(dāng)年產(chǎn)量少于400件時(shí),總收益(成本與總利潤的和,單位:元)是年產(chǎn)量(單位:件)的二次函數(shù);,當(dāng)年產(chǎn)量不少于件時(shí),RQ的一次函數(shù),以下是QR的部分?jǐn)?shù)據(jù):

Q/

50

200

350

500

650

R/

23750

80000

113750

125000

1332500

問:每年生產(chǎn)多少件產(chǎn)品時(shí),總利潤最大?最大利潤為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】心理學(xué)家通過研究學(xué)生的學(xué)習(xí)行為發(fā)現(xiàn);學(xué)生的接受能力與老師引入概念和描述問題所用的時(shí)間相關(guān),教學(xué)開始時(shí),學(xué)生的興趣激增,學(xué)生的興趣保持一段較理想的狀態(tài),隨后學(xué)生的注意力開始分散,分析結(jié)果和實(shí)驗(yàn)表明,用f(x)表示學(xué)生掌握和接受概念的能力,x表示講授概念的時(shí)間(單位:min),可有以下的關(guān)系:f(x)=
(Ⅰ)開講后第5min與開講后第20min比較,學(xué)生的接受能力何時(shí)更強(qiáng)一些?
(Ⅱ)開講后多少min學(xué)生的接受能力最強(qiáng)?能維持多少時(shí)間?
(Ⅲ)若一個(gè)新數(shù)學(xué)概念需要55以上(包括55)的接受能力以及13min時(shí)間,那么老師能否在學(xué)生一直達(dá)到所需接受能力的狀態(tài)下講授完這個(gè)概念?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知全集U=R,集合 ,B={x|1<x<6}
(1)求A∩UB;
(2)已知C={x|a≤x≤a+1},若A∩C=C,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某家庭進(jìn)行理財(cái)投資,根據(jù)長期收益率市場(chǎng)預(yù)測(cè),投資債券等穩(wěn)健型產(chǎn)品的收益與投資額成正比,投資股票等風(fēng)險(xiǎn)型產(chǎn)品的收益與投資額的算術(shù)平方根成正比,已知投資1萬元時(shí)兩類產(chǎn)品的收益分別為0.125萬元和0.5萬元(如圖).

(1)分別寫出兩種產(chǎn)品的收益和投資的函數(shù)關(guān)系;
(2)該家庭現(xiàn)有20萬元資金,全部用于理財(cái)投資,問:怎樣分配資金能使投資獲得最大的收益,其最大收益為多少萬元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某種大型商品,A,B兩地都有出售,且價(jià)格相同、某地居民從兩地之一購得商品后運(yùn)回的費(fèi)用是:每單位距離A地的運(yùn)費(fèi)是B地的運(yùn)費(fèi)的3倍,已知A,B兩地距離為10千米,顧客選擇A或B地購買這種商品的標(biāo)準(zhǔn)是:包括運(yùn)費(fèi)和價(jià)格的總費(fèi)用較低,求A,B兩地的售貨區(qū)域的分界線的曲線形狀,并指出曲線上、曲線內(nèi)、曲線外的居民應(yīng)如何選擇購貨地點(diǎn)

查看答案和解析>>

同步練習(xí)冊(cè)答案