【題目】已知f(x+1)= ,則f(2x﹣1)的定義域為( )
A.
B.
C.
D.
【答案】D
【解析】解:令x+1=t,則x=t﹣1,∴f(t)= = ,
∵﹣t2+2t≥0,解之得0≤t≤2.
∴函數(shù)f(t)= 的定義域為[0,2].
令0≤2x﹣1≤2,解得 ,
∴函數(shù)f(2x﹣1)的定義域為[ , ].
故選D.
【考點精析】根據(jù)題目的已知條件,利用函數(shù)的定義域及其求法的相關(guān)知識可以得到問題的答案,需要掌握求函數(shù)的定義域時,一般遵循以下原則:①是整式時,定義域是全體實數(shù);②是分式函數(shù)時,定義域是使分母不為零的一切實數(shù);③是偶次根式時,定義域是使被開方式為非負值時的實數(shù)的集合;④對數(shù)函數(shù)的真數(shù)大于零,當(dāng)對數(shù)或指數(shù)函數(shù)的底數(shù)中含變量時,底數(shù)須大于零且不等于1,零(負)指數(shù)冪的底數(shù)不能為零.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】命題p: =1表示雙曲線方程,命題q:函數(shù)f(m)= 有意義.若p∨q為真,p∧q為假,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】圓x2+y2=1上任意一點P,過點P作兩直線分別交圓于A,B兩點,且∠APB=60°,則|PA|2+|PB|2的取值范圍為___.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨機詢問某大學(xué)40名不同性別的大學(xué)生在購買食物時是否讀營養(yǎng)說明,得到如下列聯(lián)表:
男 | 女 | 總計 | |
讀營養(yǎng)說明 | 16 | 8 | 24 |
不讀營養(yǎng)說明 | 4 | 12 | 16 |
總計 | 20 | 20 | 40 |
(1)根據(jù)以上列聯(lián)表進行獨立性檢驗,能否在犯錯誤的概率不超過0.01的前提下認為性別與是否讀營養(yǎng)說明之間有關(guān)系?
(2)從被詢問的16名不讀營養(yǎng)說明的大學(xué)生中,隨機抽取2名學(xué)生,求抽到男生人數(shù)的分布列及其均值(即數(shù)學(xué)期望).
(注: ,其中為樣本容量)
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線 : (t為參數(shù)).以坐標(biāo)原點為極點,x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的坐標(biāo)方程為 .
(1)將曲線C的極坐標(biāo)方程化為直坐標(biāo)方程;
(2)設(shè)點M的直角坐標(biāo)為 ,直線l與曲線C的交點為A,B,求|MA||MB|的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系 中,直線 的參數(shù)方程為 為參數(shù)),以該直角坐標(biāo)系的原點 為極點, 軸的非負半軸為極軸的極坐標(biāo)系下,圓 的方程為 .
(1)求直線 的普通方程和圓 的圓心的極坐標(biāo);
(2)設(shè)直線 和圓 的交點為 、 ,求弦 的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左焦點的離心率為是和的等比中項.
(1)求曲線的方程;
(2)傾斜角為的直線過原點且與交于兩點,傾斜角為的直線過且與交于兩點,若,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四邊形ABCD是平行四邊形,點P是平面ABCD外一點,M是PC的中點,在DM上取一點G,過G和AP作平面交平面BDM于GH.求證:
(1)AP∥平面BDM;
(2)AP∥GH.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若,證明:對任意的實數(shù),都有.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com