已知兩點(diǎn)M(1,),N(-4,-),給出下列曲線方程:

①4x+2y-1=0          ②x2+y2=3

+y2=1           -y2=1

在曲線上存在點(diǎn)P滿足|MP|=|NP|的所有曲線方程是(    )

A.①③              B.②④              C.①②③              D.②③④

解析:因P滿足|MP|=|NP|,所以點(diǎn)P在線段MN的垂直平分線上,直線MN的斜率為Equation.3,得MN的垂直平行線l的方程為y=-2(x+).

    曲線①為直線,其斜率為-2,且與l不重合,故P不能在曲線①上,排除A、C;曲線③為橢圓,聯(lián)立l與③的方程,消去y得9x2+24x+16=0x=-,從而y=-,∴l(xiāng)與曲線③有一公共點(diǎn)(-,-).

答案:D


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),已知兩點(diǎn)M (1,-3)、N(5,1),若點(diǎn)C滿足
OC
=t
OM
+(1-t)
ON
(t∈R),點(diǎn)C的軌跡與拋物線:y2=4x交于A、B兩點(diǎn).
(1)求證:
OA
OB
;
(2)在x軸上是否存在一點(diǎn)P (m,0),使得過點(diǎn)P任作拋物線的一條弦,并以該弦為直徑的圓都過原點(diǎn).若存在,請(qǐng)求出m的值及圓心的軌跡方程;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知兩點(diǎn)M(1,
5
4
),N(-4,-
5
4
),給出下列曲線方程:
①4x+2y-1=0;
②x2+y2=3;
x2
2
+y2=1;
x2
2
-y2=1.
在曲線上存在點(diǎn)P滿足|MP|=|NP|的所有曲線方程是( 。
A、①③B、②④
C、①②③D、②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),已知兩點(diǎn)M(1,-3)、N(5,1),若點(diǎn)C滿足
OC
=t
OM
+(1-t)
ON
(t∈R),點(diǎn)C的軌跡與拋物線:y2=4x交于A、B兩點(diǎn).
(Ⅰ)求證:
OA
OB
;
(Ⅱ)在x軸上是否存在一點(diǎn)P(m,0)(m∈R),使得過P點(diǎn)的直線交拋物線于D、E兩點(diǎn),并以該弦DE為直徑的圓都過原點(diǎn).若存在,請(qǐng)求出m的值及圓心的軌跡方程;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知兩點(diǎn)M(1,
5
4
),N(-4,
5
4
),給出下列曲線方程
①x+2y-1=0; 
②x2+y2=3;   
x2
2
+y2=1
      
x2
2
-y2=1
,
在曲線上存在點(diǎn)P滿足
.
MP
.
=
.
NP
.
的所有曲線方程是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2010•廣州模擬)已知兩點(diǎn)M(-1,0)、N(1,0),點(diǎn)P為坐標(biāo)平面內(nèi)的動(dòng)點(diǎn),滿足|
MN
|•|
NP
|=
MN
MP

(1)求動(dòng)點(diǎn)P的軌跡方程;
(2)若點(diǎn)A(t,4)是動(dòng)點(diǎn)P的軌跡上的一點(diǎn),K(m,0)是x軸上的一動(dòng)點(diǎn),試討論直線AK與圓x2+(y-2)2=4的位置關(guān)系.

查看答案和解析>>

同步練習(xí)冊(cè)答案