【題目】眾所周知,大型網(wǎng)絡(luò)游戲(下面簡(jiǎn)稱網(wǎng)游)的運(yùn)行必須依托于網(wǎng)絡(luò)的基礎(chǔ)上,否則會(huì)出現(xiàn)頻繁掉線的情況,進(jìn)而影響游戲的銷售和推廣,某網(wǎng)游經(jīng)銷在甲地區(qū)5個(gè)位置對(duì)兩種類型的網(wǎng)絡(luò)(包括電信網(wǎng)通)在相同條件下進(jìn)行游戲掉線的測(cè)試,得到數(shù)據(jù)如下:

位置

類型

A

B

C

D

E

電信

4

3

8

6

12

網(wǎng)通

5

7

9

4

3

1)如果在測(cè)試中掉線次數(shù)超過5次,則網(wǎng)絡(luò)狀況為糟糕,否則為良好,那么在犯錯(cuò)誤的概率不超過0.15的前提下,能否說明網(wǎng)絡(luò)狀況與網(wǎng)絡(luò)的類型有關(guān)?

2)若該游戲經(jīng)銷商要在上述接受測(cè)試的電信的5個(gè)地區(qū)中任選2個(gè)作為游戲推廣,求A,B兩地區(qū)至少選到一個(gè)的概率.

參考公式:

【答案】1)不能;(2

【解析】

1)根據(jù)題意列出列聯(lián)表,計(jì)算觀測(cè)值,對(duì)照臨界值得出結(jié)論;

2)用列舉法寫出基本事件數(shù),利用古典概型概率公式計(jì)算所求的概率值.

1)根據(jù)題意列出列聯(lián)表如下:

位置

類型

糟糕

良好

合計(jì)

電信

3

2

5

網(wǎng)通

2

3

5

合計(jì)

5

5

10

,

在犯錯(cuò)誤的概率不超過的前提下,不能說明網(wǎng)絡(luò)狀況與網(wǎng)絡(luò)的類型有關(guān).

2)依題意,在上述接受測(cè)試的電信的5個(gè)地區(qū)中任選2個(gè)作為游戲推廣,

其所有的可能有

其中滿足條件的為,

故所求概率

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右焦點(diǎn)分別為,離心率為為橢圓上一動(dòng)點(diǎn)(異于左右頂點(diǎn)),面積的最大值為

(1)求橢圓的方程;

(2)若直線與橢圓相交于點(diǎn)兩點(diǎn),問軸上是否存在點(diǎn),使得是以為直角頂點(diǎn)的等腰直角三角形?若存在,求點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知橢圓的離心率,左頂點(diǎn)為,過點(diǎn)A作斜率為的直線l交橢圓C于點(diǎn)D,交y軸于點(diǎn)E.

1)求橢圓C的方程;

2)已知點(diǎn)P的中點(diǎn),是否存在定點(diǎn)Q,對(duì)于任意的都有?若存在,求出點(diǎn)Q的坐標(biāo),若不存在,說明理由;

3)若過點(diǎn)O作直線l的平行線交橢圓C于點(diǎn)M,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱中,,,,為棱上的動(dòng)點(diǎn).

1)若的中點(diǎn),求證:平面;

2)若平面平面ABC,且是否存在點(diǎn),使二面角的平面角的余弦值為?若存在,求出的值,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,是正方形,點(diǎn)在以為直徑的半圓弧上(不與,重合),為線段的中點(diǎn),現(xiàn)將正方形沿折起,使得平面平面.

1)證明:平面.

2)三棱錐的體積最大時(shí),求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】[選修4-4:極坐標(biāo)與參數(shù)方程]

在直角坐標(biāo)系中,曲線的參數(shù)方程為是參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

(1)求曲線的極坐標(biāo)方程和曲線的直角坐標(biāo)方程;

(2)若射線 與曲線交于,兩點(diǎn),與曲線交于,兩點(diǎn),求取最大值時(shí)的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)若,求的單調(diào)區(qū)間;

2)證明:(i;

ii)對(duì)任意,對(duì)恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)常數(shù),函數(shù)

(1)當(dāng)時(shí),判斷上單調(diào)性,并加以證明;

(2)當(dāng)時(shí),研究的奇偶性,并說明理由;

(3)當(dāng)時(shí),若存在區(qū)間使得上的值域?yàn)?/span>,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,分別為雙曲線的左、右焦點(diǎn),以為直徑的圓與雙曲線在第一象限和第三象限的交點(diǎn)分別為,,設(shè)四邊形的周長(zhǎng)為,面積為,且滿足,則該雙曲線的離心率為______.

查看答案和解析>>

同步練習(xí)冊(cè)答案