【題目】已知函數(shù)f(x)=alnx+(x﹣c)|x﹣c|,a<0,c>0 (Ⅰ)當(dāng) 時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)設(shè)函數(shù)f(x)的圖象在點(diǎn)P(x1 , f(x1)),Q(x2 , f(x2))兩處的切線分別為l1 , l2 . 若 ,且l1⊥l2 , 求實(shí)數(shù)c的最小值.
【答案】解:函數(shù) ,求導(dǎo)數(shù) ,
(Ⅰ)當(dāng) 時(shí), ,
若 ,則 恒成立,
所以f(x)在 上單調(diào)遞減;若 ,則 ,
令f'(x)=0,解得 或 (舍),
當(dāng) 時(shí),f'(x)<0,f(x)在 上單調(diào)遞減;
當(dāng) 時(shí),f'(x)>0,f(x)在 上單調(diào)遞增.
所以函數(shù)f(x)的單調(diào)遞減區(qū)間是 ,單調(diào)遞增區(qū)間是
(Ⅱ)由l1⊥l2知, ,而 ,則 ,
若 ,則
所以 ,解得 ,不符合題意
故 ,則
整理得 ,由c>0,a<0得
令 ,則 ,所以
設(shè) ,當(dāng) 時(shí),g'(t)<0,g(t)在 上單調(diào)遞減;
當(dāng) 時(shí),g'(t)>0,g(t)在 上單調(diào)遞增
所以函數(shù)g(t)的最小值為 ,故實(shí)數(shù)c的最小值為
【解析】(Ⅰ)求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間即可;(Ⅱ)根據(jù)垂直關(guān)系求出a的范圍,令 ,則 ,表示出c,根據(jù)函數(shù)的單調(diào)性求出c的最小值即可.
【考點(diǎn)精析】本題主要考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性的相關(guān)知識(shí)點(diǎn),需要掌握一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個(gè)區(qū)間內(nèi),(1)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞減才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】f(x)=Acos(ωx+φ)(A,ω>0)的圖象如圖所示,為得到g(x)=﹣Asin(ωx+ )的圖象,可以將f(x)的圖象( )
A.向右平移 個(gè)單位長(zhǎng)度
B.向右平移 個(gè)單位長(zhǎng)度
C.向左平移 個(gè)單位長(zhǎng)度
D.向左平移 個(gè)單位長(zhǎng)度
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,有一邊長(zhǎng)為6的正方形鐵片,在鐵片的四角各截去一個(gè)邊長(zhǎng)為x的小正方形后,沿圖中虛線部分折起,做成一個(gè)無(wú)蓋方盒.
(1)試用x表示方盒的容積V(x),并寫(xiě)出x的范圍;
(2)求方盒容積V(x)的最大值及相應(yīng)x的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知各項(xiàng)均不相等的等差數(shù)列{an}的前四項(xiàng)和S4=14,且a1 , a3 , a7成等比數(shù)列. (Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)Tn為數(shù)列{ }的前n項(xiàng)和,若Tn≤λan+1對(duì)n∈N*恒成立,求實(shí)數(shù)λ的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】知f(x)是定義在R上的奇函數(shù),且當(dāng)x∈(0,+∞)時(shí),f(x)=2018x+log2018x,則函數(shù)f(x)的零點(diǎn)個(gè)數(shù)是( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知三棱柱ABC-A′B′C′,底面是邊長(zhǎng)為1的正三角形,側(cè)面為全等的矩形且高為8,求一點(diǎn)自A點(diǎn)出發(fā)沿著三棱柱的側(cè)面繞行一周后到達(dá)A′點(diǎn)的最短路線長(zhǎng).
本題條件不變,求一點(diǎn)自A點(diǎn)出發(fā)沿著三棱柱的側(cè)面繞行兩周后到達(dá)A′點(diǎn)的最短路線長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】長(zhǎng)方體ABCD-A1B1C1D1中,AB=BC=2,D1D=3,點(diǎn)M是B1C1的中點(diǎn),點(diǎn)N是AB的中點(diǎn).建立如圖所示的空間直角坐標(biāo)系.
(1)寫(xiě)出點(diǎn)D、N、M的坐標(biāo);
(2)求線段MD、MN的長(zhǎng)度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】四棱錐P-ABCD的底面ABCD是正方形,E,F分別為AC和PB上的點(diǎn),它的直觀圖,正視圖,側(cè)視圖如圖所示.
(1)求EF與平面ABCD所成角的大小;
(2)求二面角B-PA-C的大小.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com