已知函數(shù),若函數(shù)恰有兩個(gè)不同的零點(diǎn),則實(shí)數(shù)的取值范圍為     

試題分析:由求導(dǎo)得,故上單調(diào)增,在上單調(diào)減,且當(dāng)時(shí),恒有.又上單調(diào)增,在上單調(diào)減,所以可作出函數(shù)的圖像,如圖.由圖可知,要使函數(shù)恰有兩個(gè)不同的零點(diǎn),需,即實(shí)數(shù)的取值范圍為.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)函數(shù)fx)定義在(0,+∞)上,f(1)=0,導(dǎo)函數(shù),.
(1)求的單調(diào)區(qū)間和最小值;
(2)討論的大小關(guān)系;
(3)是否存在x0>0,使得|gx)﹣gx0)|<對(duì)任意x>0成立?若存在,求出x0的取值范圍;若不存在請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)函數(shù)f(x)=x2-mlnx,g(x)=x2-x+a.
(1)當(dāng)a=0時(shí),f(x)≥g(x)在(1,+∞),上恒成立,求實(shí)數(shù)m的取值范圍;
(2)當(dāng)m=2時(shí),若函數(shù)h(x)=f(x)-g(x)在[1,3]上恰有兩個(gè)不同的零點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù).
(1)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;
(2)當(dāng)時(shí),討論的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)、為常數(shù)),在時(shí)取得極值.
(1)求實(shí)數(shù)的取值范圍;
(2)當(dāng)時(shí),關(guān)于的方程有兩個(gè)不相等的實(shí)數(shù)根,求實(shí)數(shù)的取值范圍;
(3)數(shù)列滿足),,數(shù)列的前項(xiàng)和為,
求證:,是自然對(duì)數(shù)的底).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知存在正數(shù)滿足的取值范圍是(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

記函數(shù)的導(dǎo)函數(shù)為,則 的值為     

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知是常數(shù)),若對(duì)曲線上任意一點(diǎn)處的切線,恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

甲、乙二人平時(shí)跑步路程與時(shí)間的關(guān)系以及百米賽跑路程和時(shí)間的關(guān)
系分別如圖①、②所示.問(wèn):
 
(1)甲、乙二人平時(shí)跑步哪一個(gè)跑得快?
(2)甲、乙二人百米賽跑,快到終點(diǎn)時(shí),誰(shuí)跑得快(設(shè)Δss的增量)?

查看答案和解析>>

同步練習(xí)冊(cè)答案