【題目】已知?jiǎng)訄A 經(jīng)過點(diǎn) ,并且與圓 相切.
(1)求點(diǎn)P的軌跡C的方程;
(2)設(shè) 為軌跡C內(nèi)的一個(gè)動(dòng)點(diǎn),過點(diǎn) 且斜率為 的直線 交軌跡C于A,B兩點(diǎn),當(dāng)k為何值時(shí)? 是與m無關(guān)的定值,并求出該值定值.

【答案】
(1)解:由題設(shè)得: ,所以點(diǎn)P的軌跡C是以M、N為焦點(diǎn)的橢圓,
(2)解:設(shè)A(x1 , y1),B(x2 , y2),G(m,0)(-2<m<2),直線l:y=k(x-m)由 得,
的值與 無關(guān),
,解得
.
【解析】(1)主要考查橢圓的性質(zhì)及其軌跡方程。
(2)先假設(shè)出直線方程,再將直線方程與已求出的橢圓方程聯(lián)立求解,得出關(guān)于m的方程式,最后將求出的方程與已知條件結(jié)合解出該定值。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若關(guān)于x的方程22x+2xa+a+1=0有實(shí)根,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)是定義在R上的奇函數(shù),滿足f(﹣ +x)=f( +x),當(dāng)x∈[0, ]時(shí),f(x)=ln(x2﹣x+1),則函數(shù)f(x)在區(qū)間[0,6]上的零點(diǎn)個(gè)數(shù)是(
A.3
B.5
C.7
D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知離心率為 的橢圓C: + =1(a>b>0)過點(diǎn)P(﹣1, ).
(1)求橢圓C的方程;
(2)直線AB:y=k(x+1)交橢圓C于A、B兩點(diǎn),交直線l:x=m于點(diǎn)M,設(shè)直線PA、PB、PM的斜率依次為k1、k2、k3 , 問是否存在實(shí)數(shù)t,使得k1+k2=tk3?若存在,求出實(shí)數(shù)t的值以及直線l的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義一個(gè)集合A的所有子集組成的集合叫做集合A的冪集,記為P(A),用n(A)表示有限集A的元素個(gè)數(shù),給出下列命題:①對于任意集合A,都有AP(A);②存在集合A,使得n[P(A)]=3;③用表示空集,若A∩B=,則P(A)∩P(B)=;④若A B,,則P(A) P(B);⑤若n(A)-n(B)=1,則n[P(A)]=2×n[P(B)]其中正確的命題個(gè)數(shù)為( )。
A.4
B.3
C.2
D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四棱柱 中,底面 是正方形,且

(1)求證: ;
(2)若動(dòng)點(diǎn) 在棱 上,試確定點(diǎn) 的位置,使得直線 與平面 所成角的正弦值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)列{an}是以a為首項(xiàng),q為公比的等比數(shù)列,數(shù)列{bn}滿足bn=1+a1+a2+…+an(n=1,2,…),數(shù)列{cn}滿足cn=2+b1+b2+…+bn(n=1,2,…).若{cn}為等比數(shù)列,則a+q=(
A.
B.3
C.
D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】近年來鄭州空氣污染較為嚴(yán)重,現(xiàn)隨機(jī)抽取一年(365天)內(nèi)100天的空氣中 指數(shù)的監(jiān)測數(shù)據(jù),統(tǒng)計(jì)結(jié)果如下:

空氣質(zhì)量

優(yōu)

輕微污染

輕度污染

中度污染

中度重污染

重度污染

天數(shù)

4

13

18

30

9

11

15

記某企業(yè)每天由空氣污染造成的經(jīng)濟(jì)損失為 (單位:元), 指數(shù)為 .當(dāng) 在區(qū)間 內(nèi)時(shí)對企業(yè)沒有造成經(jīng)濟(jì)損失;當(dāng) 在區(qū)間 內(nèi)時(shí)對企業(yè)造成經(jīng)濟(jì)損失成直線模型(當(dāng) 指數(shù)為150時(shí)造成的經(jīng)濟(jì)損失為500元,當(dāng) 指數(shù)為200 時(shí),造成的經(jīng)濟(jì)損失為700元);當(dāng) 指數(shù)大于300時(shí)造成的經(jīng)濟(jì)損失為2000元.

非重度污染

重度污染

合計(jì)

供暖季

非供暖季

合計(jì)

100


(1)試寫出 的表達(dá)式;
(2)試估計(jì)在本年內(nèi)隨機(jī)抽取一天,該天經(jīng)濟(jì)損失 大于500元且不超過900元的概率;
(3)若本次抽取的樣本數(shù)據(jù)有30天是在供暖季,其中有8天為重度污染,完成下面列聯(lián)表,并判斷是否有 的把握認(rèn)為鄭州市本年度空氣重度污染與供暖有關(guān)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè) 是定義在 上的函數(shù),則“函數(shù) 為偶函數(shù)”是“函數(shù) 為奇函數(shù)”的( )
A.充分不必要條件
B.必要不充分條件
C.充分必要條件
D.既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊答案