【題目】已知離心率為 的橢圓C: + =1(a>b>0)過點P(﹣1, ).
(1)求橢圓C的方程;
(2)直線AB:y=k(x+1)交橢圓C于A、B兩點,交直線l:x=m于點M,設直線PA、PB、PM的斜率依次為k1、k2、k3 , 問是否存在實數(shù)t,使得k1+k2=tk3?若存在,求出實數(shù)t的值以及直線l的方程;若不存在,請說明理由.
【答案】
(1)解:由橢圓的離心率e= = ,則a= c,
b2=a2﹣c2=c2,將P代橢圓方程: ,則 ,解得:c=1,
則a= ,b=1,
∴橢圓的方程:
(2)解:由題意可知:k顯然存在且不為0,設A(x1,y1),B(x2,y2),y1=k(x1+1),y2=k(x2+1),
則 ,整理得:(1+2k2)x2+4k2x+2k2﹣2=0,
x1+x2=﹣ ,x1x2= ,
當x=m時,y=k(m+1),
則k1= ,k2= ,則k3= ,
則k1+k2= + = = =2k+ ,
由k1+k2=tk3,2k+ =t× =tk﹣ ,則當t=2,m=﹣2
∴當直線l:x=﹣2,存在實數(shù)t=2,使得k1+k2=tk3成立
【解析】(1)由橢圓的離心率公式,將P代橢圓方程,即可求得a和b的值,即可求得橢圓方程;(2)將直線l代入橢圓方程,利用韋達定理及直線的斜率公式,求得k1+k2及k3,假設存在實數(shù)t,使得k1+k2=tk3,代入即可求得t和m的值.
科目:高中數(shù)學 來源: 題型:
【題目】如圖①,在矩形 中, , 是 的中點,將三角形 沿 翻折到圖②的位置,使得平面 平面 .
(1)在線段 上確定點 ,使得 平面 ,并證明;
(2)求 與 所在平面構成的銳二面角的正切值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知集合A={3,a2},集合B={0,b,1﹣a},且A∩B={1},則A∪B=( )
A.{0,1,3}
B.{1,2,4}
C.{0,1,2,3}
D.{0,1,2,3,4}
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知x,y∈R,且 ,則存在θ∈R,使得xcosθ+ysinθ+1=0成立的P(x,y)構成的區(qū)域面積為( )
A.4 ﹣
B.4 ﹣
C.
D. +
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知集合A={x|x<2},B={x|3﹣2x>0},則( 。
A.A∩B={x|x< }
B.A∩B=?
C.A∪B={x|x< }
D.AUB=R
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知動圓 經(jīng)過點 ,并且與圓 相切.
(1)求點P的軌跡C的方程;
(2)設 為軌跡C內的一個動點,過點 且斜率為 的直線 交軌跡C于A,B兩點,當k為何值時? 是與m無關的定值,并求出該值定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設定義在R上的函數(shù)y=f(x)的導函數(shù)為f′(x).如果存在x0∈[a,b],使得f(b)-f(a)=f′(x0)(b-a)成立,則稱x0為函數(shù)f(x)在區(qū)間[a,b]上的“中值點”.那么函數(shù)f(x)=x3-3x在區(qū)間[-2,2]上的“中值點”為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com