【題目】如圖所示,正四棱椎P-ABCD中,底面ABCD的邊長為2,側(cè)棱長為.
(I)若點E為PD上的點,且PB∥平面EAC.試確定E點的位置;
(Ⅱ)在(I)的條件下,點F為線段PA上的一點且,若平面AEC和平面BDF所成的銳二面角的余弦值為,求實數(shù)的值.
【答案】(I)E為PD中點,(Ⅱ)
【解析】
(Ⅰ)設(shè)BD交AC于點O,連結(jié)OE推導出PB∥OE,由O為BD的中點,推導出在△BDP中,E為PD中點.
(Ⅱ)連結(jié)OP,以O為原點,OC、OD、OP所成直線為x,y,z軸,建立空間直角坐標系,利用向量法能求出λ.
(Ⅰ)設(shè)BD交AC于點O,連結(jié)OE,
∵PB∥平面AEC,平面AEC∩平面BDP=OE,
∴PB∥OE,
又O為BD的中點,
∴在△BDP中,E為PD中點.
(Ⅱ)連結(jié)OP,由題意得PO⊥平面ABCD,且AC⊥BD,
∴以O為原點,OC、OD、OP所成直線為x,y,z軸,建立空間直角坐標系,
OP,
∴A(,0,0),B(0,,0),C(,0,0),D(0,,0),P(0,0,),
則E(0,,),(,0,0),(,,),(0,,0),
設(shè)平面AEC的法向量(x,y,z),
則,令z=1,得平面AEC的一個法向量(0,,1),
設(shè)平面BDF的法向量(x,y,z),
由,得F(,0,),(,,),
∴,令z=1,得(,0,1),
∵平面AEC和平面BDF所成的銳二面角的余弦值為,
∴cos,
解得λ.
科目:高中數(shù)學 來源: 題型:
【題目】已知高中學生的數(shù)學成績與物理成績具有線性相關(guān)關(guān)系,在一次考試中某班7名學生的數(shù)學成績與物理成績?nèi)缦卤恚?/span>
數(shù)學成績 | 88 | 83 | 117 | 92 | 108 | 100 | 112 |
物理成績 | 94 | 91 | 108 | 96 | 104 | 101 | 106 |
(1)求這7名學生的數(shù)學成績的極差和物理成績的平均數(shù);
(2)求物理成績對數(shù)學成績的線性回歸方程;若某位學生的數(shù)學成績?yōu)?/span>110分,試預(yù)測他的物理成績是多少?
下列公式與數(shù)據(jù)可供參考:
用最小二乘法求線性回歸方程的系數(shù)公式:,;
,,
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)
(Ⅰ)若函數(shù)存在最小值,且最小值大于,求實數(shù)的取值范圍;
(Ⅱ)若存在實數(shù),使得,求證:函數(shù)在區(qū)間上單調(diào)遞增。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】隨著共享單車的成功運營,更多的共享產(chǎn)品逐步走人大家的世界,共享汽車、共享籃球、共享充電寶等各種共享產(chǎn)品層出不窮,某公司隨機抽取1000人對共享產(chǎn)品是否對日常生活有益進行了問卷調(diào)查,并對參與調(diào)查的1000人中的性別以及意見進行了分類,得到的數(shù)據(jù)如下表所示:
男 | 女 | 總計 | |
認為共享產(chǎn)品對生活有益 | |||
認為共享產(chǎn)品對生活無益 | |||
總計 |
(1)求出表格中的值,并根據(jù)表中的數(shù)據(jù),判斷能否在犯錯誤的概率不超過的前提下,認為對共享產(chǎn)品的態(tài)度與性別有關(guān)系?
(2)現(xiàn)按照分層抽樣從認為共享產(chǎn)品對生活無益的人員中隨機抽取6人,再從6人中隨機抽取2人贈送超市購物券作為答謝,求恰有1人是女性的概率.
參考公式:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程:
已知極坐標系的極點在直角坐標系的原點,極軸與x軸非負半軸重合,直線l的參數(shù)方程為:(t為參數(shù),a∈[0,π),曲線C的極坐標方程為:p=2cosθ.
(Ⅰ)寫出曲線C在直角坐標系下的標準方程;
(Ⅱ)設(shè)直線l與曲線C相交PQ兩點,若|PQ|,求直線l的斜率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某投資公司準備在2020年年初將兩千萬投資東營經(jīng)濟開發(fā)區(qū)的“示范區(qū)”新型物流,商旅文化兩個項目中的一個之中.
項目一:新型物流倉是為企業(yè)提供倉儲、運輸、配送、貨運信息等綜合物流服務(wù)的平臺.現(xiàn)準備投資建設(shè)10個新型物流倉,每個物流倉投資0.2千萬元,假設(shè)每個物流倉盈利是相互獨立的,據(jù)市場調(diào)研,到2022年底每個物流倉盈利的概率為,若盈利則盈利為投資額的40%,否則盈利額為0.
項目二:購物娛樂廣場是一處融商業(yè)和娛樂于一體的現(xiàn)代化綜合服務(wù)廣場.據(jù)市場調(diào)研,投資到該項目上,到2022年底可能盈利投資額的50%,也可能虧損投資額的30%,且這兩種情況發(fā)生的概率分別為和.
(1)若投資項目一,記為盈利的物流倉的個數(shù),求(用表示);
(2)若投資項目二,記投資項目二的盈利為千萬元,求(用表示);
(3)在(1)(2)兩個條件下,針對以上兩個投資項目,請你為投資公司選擇一個項目,并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)O為坐標原點,動點M在橢圓C:上,過M作x軸的垂線,垂足為N,點P滿足.
(1)求點P的軌跡方程;
(2)設(shè)點Q在直線上,且。證明:過點P且垂直于OQ的直線l過C的左焦點F.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com