【題目】設(shè)、是兩個不同的平面,點(diǎn)、,、,下列命題中正確的是( )
A.若,,則,
B.若,,則,
C.若,,,則、,
D.若,,則
【答案】C
【解析】
利用四邊形為等腰梯形且判斷A選項(xiàng)的正誤;利用面面平行的性質(zhì)定理結(jié)合平行四邊形的性質(zhì)可判斷B選項(xiàng)的正誤;利用面面、線面垂直的性質(zhì)定理可判斷C選項(xiàng)的正誤;根據(jù)條件直接判斷與的位置關(guān)系可判斷D選項(xiàng)的正誤.綜合可得出結(jié)論.
對于A選項(xiàng),若四邊形為等腰梯形且,則與為梯形的兩腰,不平行,A選項(xiàng)錯誤;
對于B選項(xiàng),若,,則平面,平面,
由面面平行的性質(zhì)定理可得,所以,四邊形為平行四邊形,
則,但兩條對角線長不一定相等,即不一定成立,B選項(xiàng)錯誤;
對于C選項(xiàng),設(shè),如下圖所示,過點(diǎn)在平面內(nèi)作,垂足為點(diǎn),
,,,,,
,而過點(diǎn)作平面的垂線,有且只有一條,且,則點(diǎn)與點(diǎn)重合,
即,同理可得,,,C選項(xiàng)正確;
對于D選項(xiàng),,,由于與的位置關(guān)系不確定,
則與平行、相交或異面,D選項(xiàng)錯誤.
故選:C.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),下列給出四個結(jié)論:
①的最大值為2;
②在區(qū)間上的單調(diào)增區(qū)間是;
③在中,若,則;
④將曲線向左平移個單位,得到函數(shù)的圖象,再將曲線
所有點(diǎn)的縱坐標(biāo)變?yōu)樵瓉淼?/span>2倍(橫坐標(biāo)不變),得到函數(shù)的導(dǎo)數(shù)的圖象.其中正確的是_______________(填寫所有正確結(jié)論的編號).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某精密儀器生產(chǎn)車間每天生產(chǎn)個零件,質(zhì)檢員小張每天都會隨機(jī)地從中抽取50個零件進(jìn)行檢查是否合格,若較多零件不合格,則需對其余所有零件進(jìn)行檢查.根據(jù)多年的生產(chǎn)數(shù)據(jù)和經(jīng)驗(yàn),這些零件的長度服從正態(tài)分布(單位:微米),且相互獨(dú)立.若零件的長度滿足,則認(rèn)為該零件是合格的,否則該零件不合格.
(1)假設(shè)某一天小張抽查出不合格的零件數(shù)為,求及的數(shù)學(xué)期望;
(2)小張某天恰好從50個零件中檢查出2個不合格的零件,若以此頻率作為當(dāng)天生產(chǎn)零件的不合格率.已知檢查一個零件的成本為10元,而每個不合格零件流入市場帶來的損失為260元.假設(shè)充分大,為了使損失盡量小,小張是否需要檢查其余所有零件,試說明理由.
附:若隨機(jī)變量服從正態(tài)分布,則.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某客戶準(zhǔn)備在家中安裝一套凈水系統(tǒng),該系統(tǒng)為二級過濾,使用壽命為十年如圖所示兩個二級過濾器采用并聯(lián)安裝,再與一級過濾器串聯(lián)安裝.
其中每一級過濾都由核心部件濾芯來實(shí)現(xiàn)在使用過程中,一級濾芯和二級濾芯都需要不定期更換(每個濾芯是否需要更換相互獨(dú)立).若客戶在安裝凈水系統(tǒng)的同時購買濾芯,則一級濾芯每個160元,二級濾芯每個80元.若客戶在使用過程中單獨(dú)購買濾芯則一級濾芯每個400元,二級濾芯每個200元.現(xiàn)需決策安裝凈水系統(tǒng)的同時購買濾芯的數(shù)量,為此參考了根據(jù)100套該款凈水系統(tǒng)在十年使用期內(nèi)更換濾芯的相關(guān)數(shù)據(jù)制成的圖表,其中表1是根據(jù)100個一級過濾器更換的濾芯個數(shù)制成的頻數(shù)分布表,圖2是根據(jù)200個二級過濾器更換的濾芯個數(shù)制成的條形圖.
表1:一級濾芯更換頻數(shù)分布表
一級濾芯更換的個數(shù) | 8 | 9 |
頻數(shù) | 60 | 40 |
圖2:二級濾芯更換頻數(shù)條形圖
以100個一級過濾器更換濾芯的頻率代替1個一級過濾器更換濾芯發(fā)生的概率,以200個二級過濾器更換濾芯的頻率代替1個二級過濾器更換濾芯發(fā)生的概率.
(1)求一套凈水系統(tǒng)在使用期內(nèi)需要更換的各級濾芯總個數(shù)恰好為16的概率;
(2)記表示該客戶的凈水系統(tǒng)在使用期內(nèi)需要更換的二級濾芯總數(shù),求的分布列及數(shù)學(xué)期望;
(3)記分別表示該客戶在安裝凈水系統(tǒng)的同時購買的一級濾芯和二級濾芯的個數(shù).若,且,以該客戶的凈水系統(tǒng)在使用期內(nèi)購買各級濾芯所需總費(fèi)用的期望值為決策依據(jù),試確定的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列滿足,,,記數(shù)列的前項(xiàng)和為,則對任意,則①數(shù)列單調(diào)遞增;②;③;④.上述四個結(jié)論中正確的是______.(填寫相應(yīng)的序號)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),則下列結(jié)論正確的個數(shù)有( )
①是函數(shù)圖像的一條對稱軸
②是函數(shù)圖像的一個對稱中心
③將函數(shù)圖像向右平移單位所得圖像的解析式為得
④函數(shù)在區(qū)間內(nèi)單調(diào)遞增
A.1B.2C.3D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】直線與拋物線相交于,兩點(diǎn),且,若,到軸距離的乘積為.
(1)求的方程;
(2)設(shè)點(diǎn)為拋物線的焦點(diǎn),當(dāng)面積最小時,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我們稱n()元有序?qū)崝?shù)組(,,…,)為n維向量,為該向量的范數(shù).已知n維向量,其中,,2,…,n.記范數(shù)為奇數(shù)的n維向量的個數(shù)為,這個向量的范數(shù)之和為.
(1)求和的值;
(2)當(dāng)n為偶數(shù)時,求,(用n表示).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知菱形ABCD中,∠BAD=60°,AC與BD相交于點(diǎn)O.將△ABD沿BD折起,使頂點(diǎn)A至點(diǎn)M,在折起的過程中,下列結(jié)論正確的是( )
A.BD⊥CM
B.存在一個位置,使△CDM為等邊三角形
C.DM與BC不可能垂直
D.直線DM與平面BCD所成的角的最大值為60°
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com