已知數(shù)列為遞增等差數(shù)列,且是方程的兩根.數(shù)列為等比數(shù)列,且.
(Ⅰ)求數(shù)列的通項公式;
(Ⅱ)若,求數(shù)列的前項和.
(Ⅰ),;(Ⅱ).
解析試題分析:(Ⅰ)解方程可得:,代入等差數(shù)列的通項公式可得其公差和首項,從而得數(shù)列的通項公式;再由求得的公比和首項,從而求得的通項公式.
(Ⅱ)凡是由等差數(shù)列與等比數(shù)列的積構(gòu)成的數(shù)列,求其和都用錯位相減法.本題中求數(shù)列的前項和就用錯位相消法.
試題解析:(Ⅰ)解方程得:.
是方程的兩根,且數(shù)列為遞增等差數(shù)列,
所以 .
又,得,所以,.
(Ⅱ) ,所以
………………………………①
……………………………②
①-②得:
所以.
考點:1、等差數(shù)列等比數(shù)列的通項公式;2、錯位相消法求和.
科目:高中數(shù)學(xué) 來源: 題型:解答題
數(shù)列{an}中,a1=1,當時,其前n項和滿足.
(Ⅰ)求Sn的表達式;
(Ⅱ)設(shè),數(shù)列{bn}的前n項和為,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知等差數(shù)列的前項和為,且.
(I)求數(shù)列的通項公式;
(II)設(shè)等比數(shù)列,若,求數(shù)列的前項和
(Ⅲ)設(shè),求數(shù)列的前項和
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知各項為正數(shù)的等差數(shù)列滿足,,且().
(Ⅰ)求數(shù)列的通項公式;
(Ⅱ)設(shè),求數(shù)列的前n項和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知遞增等差數(shù)列前3項的和為,前3項的積為8,
(1)求等差數(shù)列的通項公式;
(2)設(shè),求數(shù)列的前項和。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com