【題目】如圖,在地正西方向的處和正東方向的處各一條正北方向的公路和,現(xiàn)計劃在和路邊各修建一個物流中心和.
(1)若在處看,的視角,在處看測得,求,;
(2)為緩解交通壓力,決定修建兩條互相垂直的公路和,設,公路的每千米建設成本為萬元,公路的每千米建設成本為萬元.為節(jié)省建設成本,試確定,的位置,使公路的總建設成本最小.
科目:高中數(shù)學 來源: 題型:
【題目】我市準備實施天然氣價格階梯制,現(xiàn)提前調(diào)查市民對天然氣價格階梯制的態(tài)度,隨機抽查了名市民,現(xiàn)將調(diào)查情況整理成了被調(diào)查者的頻率分布直方圖(如圖)和贊成者的頻數(shù)表如下:
年齡(歲) | ||||||
贊成人數(shù) |
(1)若從年齡在,的被調(diào)查者中各隨機選取人進行調(diào)查,求所選取的人中至少有人對天然氣價格階梯制持贊成態(tài)度的概率;
(2)若從年齡在,的被調(diào)查者中各隨機選取人進行調(diào)查,記選取的人中對天然氣價格實施階梯制持不贊成態(tài)度的人數(shù)為,求隨機變量的分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在中,角A,B,C的對邊分別為a,b,c,.
(1)求角C;
(2)設D為邊AC上一點,AD=BD,若BC=2,的面積為3,求的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某企業(yè)有甲、乙兩套設備生產(chǎn)同一種產(chǎn)品,為了檢測兩套設備的生產(chǎn)質(zhì)量情況,隨機從兩套設備生產(chǎn)的大量產(chǎn)品中各抽取了50件產(chǎn)品作為樣本,檢測一項質(zhì)量指標值,若該項質(zhì)量指標值落在內(nèi),則為合格品,否則為不合格品.表1是甲套設備的樣本的頻數(shù)分布表,圖1是乙套設備的樣本的頻率分布直方圖.
表1:甲套設備的樣本的頻數(shù)分布表
質(zhì)量指標值 | ||||||
頻數(shù) | 1 | 5 | 18 | 19 | 6 | 1 |
圖1:乙套設備的樣本的頻率分布直方圖
(1)根據(jù)表1和圖1,通過計算合格率對兩套設備的優(yōu)劣進行比較;
(2)填寫下面列聯(lián)表,并根據(jù)列聯(lián)表判斷是否有的把握認為該企業(yè)生產(chǎn)的這種產(chǎn)品的質(zhì)量指標值與甲、乙兩套設備的選擇有關.
甲套設備 | 乙套設備 | 合計 | |
合格品 | |||
不合格品 | |||
合計 |
附:
0.15 | 0.10 | 0.050 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
參考公式:,其中.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(本小題滿分13分) 已知橢圓經(jīng)過點,離心率為,過點的直線與橢圓交于不同的兩點.
(1)求橢圓的方程;
(2)求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某種大型醫(yī)療檢查機器生產(chǎn)商,對一次性購買2臺機器的客戶,推出兩種超過質(zhì)保期后兩年內(nèi)的延保維修優(yōu)惠方案:方案一:交納延保金7000元,在延保的兩年內(nèi)可免費維修2次,超過2次每次收取維修費2000元;方案二:交納延保金10000元,在延保的兩年內(nèi)可免費維修4次,超過4次每次收取維修費1000元.某醫(yī)院準備一次性購買2臺這種機器,F(xiàn)需決策在購買機器時應購買哪種延保方案,為此搜集并整理了50臺這種機器超過質(zhì)保期后延保兩年內(nèi)維修的次數(shù),得下表:
維修次數(shù) | 0 | 1 | 2 | 3 |
臺數(shù) | 5 | 10 | 20 | 15 |
以這50臺機器維修次數(shù)的頻率代替1臺機器維修次數(shù)發(fā)生的概率,記X表示這2臺機器超過質(zhì)保期后延保的兩年內(nèi)共需維修的次數(shù)。
(1)求X的分布列;
(2)以所需延保金及維修費用的期望值為決策依據(jù),醫(yī)院選擇哪種延保方案更合算?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)(,為自然對數(shù)的底數(shù)).
(1)若曲線在點處的切線與直線垂直,求的單調(diào)區(qū)間;
(2)若函數(shù)有兩個極值點,求實數(shù)的取值范圍;
(3)證明:當時,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)討論的單調(diào)性.
(2)試問是否存在,使得對恒成立?若存在,求的取值范圍;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com