【題目】已知數(shù)集具有性質(zhì);對任意的、,,與兩數(shù)中至少有一個屬于.
(1)分別判斷數(shù)集與是否具有性質(zhì),并說明理由;
(2)證明:,且;
(3)當時,若,求集合.
【答案】(1) 集合具有性質(zhì),集合不具有性質(zhì).(2)證明見解析.(3).
【解析】
(1)利用與兩數(shù)中至少有一個屬于.即可判斷出結(jié)論.
(2)令“,由“與兩數(shù)中至少有一個屬于”可得屬于.
令,那么是集合中某項,不符合不符合題意,符合.同理可得:令可以得到,令,可以得到,倒序相加即可.
(3)當時,取,當時,,由A具有性質(zhì)P,,又時,,可得,則 ,又,可得,則,則有.可得即是首項為,公差為等差數(shù)列是首項為0,公差為等差數(shù)列.
解:(1)在集合中,設(shè)
①,具有性質(zhì)
②,具有性質(zhì)
③,具有性質(zhì)
④,具有性質(zhì)
⑤,具有性質(zhì)
⑥,具有性質(zhì)
綜上所述:集合具有性質(zhì);
在集合中,設(shè),
①,具有性質(zhì)
②,具有性質(zhì)
③,具有性質(zhì)
④,不具有性質(zhì)
⑤,具有性質(zhì)
⑥,具有性質(zhì)
綜上所述:集合不具有性質(zhì).
故集合具有性質(zhì),集合不具有性質(zhì).
(2) 證明:令,
則與兩數(shù)中至少有一個屬于”,
不屬于,屬于.
令,那么是集合中某項,不符合題意,可以.
如果是或者,那么可知,
那么,只能是等于,矛盾.
所以令可以得到,
同理,令,可以得到,
倒序相加即可得到
即
(3)當時,取,當時,,
由具有性質(zhì),,又時,,
,
,
則,
,
從而可得,
故,即,
又
,則,則有
又
,
即是首項為,公差為等差數(shù)列,
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有一塊大型的廣告宣傳版面,其形狀是右圖所示的直角梯形.某廠家因產(chǎn)品宣傳的需要,擬投資規(guī)劃出一塊區(qū)域(圖中陰影部分)為產(chǎn)品做廣告,形狀為直角梯形(點在曲線段上,點在線段上).已知, ,其中曲線段是以為頂點, 為對稱軸的拋物線的一部分.
(1)建立適當?shù)钠矫嬷苯亲鴺讼,分別求出曲線段與線段的方程;
(2)求該廠家廣告區(qū)域的最大面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線上一點到其焦點的距離為5,雙曲線的左頂點為,若雙曲線的一條漸近線與直線平行,則實數(shù)的值是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左右焦點分別為, 上的動點到兩焦點的距離之和為4,當點運動到橢圓的上頂點時,直線恰與以原點為圓心,以橢圓的離心率為半徑的圓相切.
(1)求橢圓的方程;
(2)設(shè)橢圓的左右頂點分別為,若交直線于兩點.問以為直徑的圓是否過定點?若過定點,請求出該定點坐標;若不過定點,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某高中生調(diào)查了當?shù)啬承^(qū)的50戶居民由于臺風(fēng)造成的經(jīng)濟損失,將收集的數(shù)據(jù)分成三組,并作出如下頻率分布直方圖:
(1)在直方圖的經(jīng)濟損失分組中,以各組的區(qū)間中點值代表該組的各個值,并以經(jīng)濟損失落入該區(qū)間的頻率作為經(jīng)濟損失取該區(qū)間中點值的概率(例如:經(jīng)濟損失則取,且的概率等于經(jīng)濟損失落入的頻率),F(xiàn)從當?shù)氐木用裰须S機抽出2戶進行捐款援助,設(shè)抽出的2戶的經(jīng)濟損失的和為,求的分布列和數(shù)學(xué)期望.
(2)臺風(fēng)后居委會號召小區(qū)居民為臺風(fēng)重災(zāi)區(qū)捐款,此高中生調(diào)查的50戶居民捐款情況如下表,在表格空白處填寫正確數(shù)字,并說明是否有95%以上的把握認為捐款數(shù)額多于或少于500元和自身經(jīng)濟損失是否到4000元有關(guān)?
經(jīng)濟損失不超過4000元 | 經(jīng)濟損失超過4000元 | 合計 | |
捐款超過500元 | 30 | ||
捐款不超過500元 | 6 | ||
合計 |
附:臨界值表參考公式: .
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的內(nèi)接等邊三角形的面積為(其中為坐標原點).
(1)試求拋物線的方程;
(2)已知點兩點在拋物線上,是以點為直角頂點的直角三角形.
①求證:直線恒過定點;
②過點作直線的垂線交于點,試求點的軌跡方程,并說明其軌跡是何種曲線.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,底面ABCD是矩形, M為PD的中點,PA⊥平面ABCD,PA=AD= 4, AB = 2.
(1)求證:AM⊥平面MCD;
(2)求直線PC與平面MAC所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】計劃在某水庫建一座至多安裝4臺發(fā)電機的水電站,過去0年的水文資料顯示,水庫年入流量(年入流量:一年內(nèi)上游來水與庫區(qū)降水之和,單位:億立方米)都在40以上,其中,不足80的年份有10年,不低于80且不足120的年份有30年,不低于120且不足160的年份有8年,不低于160的年份有2年,將年入流量在以上四段的頻率作為相應(yīng)段的概率,并假設(shè)各年的年入流量相互獨立.
(1)求在未來3年中,至多1年的年入流量不低于120的概率;
(2)水電站希望安裝的發(fā)電機盡可能運行,但每年發(fā)電機最多可運行臺數(shù)受年入流量的限制,并有如下關(guān)系:
若某臺發(fā)電機運行,則該臺發(fā)電機年利潤為500萬元;若某臺發(fā)電機未運行,則該臺發(fā)電機年虧損1500萬元,水電站計劃在該水庫安裝2臺或3臺發(fā)電機,你認為應(yīng)安裝2臺還是3臺發(fā)電機?請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】假設(shè)關(guān)于某設(shè)備的使用年限x(年)和所支出的維修費用y(萬元)有如下的統(tǒng)計資料:
x | 2 | 3 | 4 | 5 | 6 |
y | 2.2 | 3.8 | 5.5 | 6.5 | 7.0 |
(1)畫出散點圖并判斷是否線性相關(guān);
(2)如果線性相關(guān),求線性回歸方程;
(3)估計使用年限為10年時,維修費用是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com