【題目】已知,且,設(shè)函數(shù)上單調(diào)遞減, 函數(shù)上為增函數(shù), 為假, 為真,求實數(shù)的取值范圍.

【答案】.

【解析】試題分析:

由函數(shù)上單調(diào)遞減,值,則;由上為增函數(shù),知,則,由為假, 為真,則中一真一假,分類討論,即可求解實數(shù)的取值范圍.

試題解析:

∵函數(shù)y=cx在R上單調(diào)遞減,∴0<c<1.

即p:0<c<1,

∵c>0且c≠1,∴¬p:c>1.

又∵f(x)=x2﹣2cx+1在(,+∞)上為增函數(shù),∴c≤

即q:0<c≤,

∵c>0且c≠1,∴¬q:c>且c≠1.

又∵“P∧Q”為假,“P∨Q”為真,

∴p真q假,或p假q真.

①當(dāng)p真,q假時,{c|0<c<1}∩{c|c>,且c≠1}={c|<c<1}.

②當(dāng)p假,q真時,{c|c>1}∩{c|0<c≤}=

綜上所述,實數(shù)c的取值范圍是{c|<c<1}.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知平行四邊形ABCD中,AB=1,BC=2,∠CBA= ,ABEF為直角梯形,BE∥AF,∠BAF= ,BE=2,AF=3,平面ABCD⊥平面ABEF.

(1)求證:AC⊥平面ABEF;
(2)求平面ABCD與平面DEF所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知在長方體ABCD﹣A1B1C1D1中,AD=AA1=1,AB=2,點E在棱AB上移動.

(Ⅰ)求證:D1EA1D;

)在棱AB上是否存在點E使得AD1與平面D1EC成的角為?若存在,求出AE的長,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知

,解不等式

若不等式對一切實數(shù)x恒成立,求實數(shù)a的取值范圍;

,解不等式

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】本小題滿分12設(shè)為定義在R上的偶函數(shù),當(dāng)時,

1求函數(shù)在R上的解析式;

2在直角坐標(biāo)系中畫出函數(shù)的圖象;

3若方程-k=0有四個解,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 的右焦點為F,過橢圓C中心的弦PQ長為2,且∠PFQ=90°,△PQF的面積為1.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)A1、A2分別為橢圓C的左、右頂點,S為直線 上一動點,直線A1S交橢圓C于點M,直線A2S交橢圓于點N,設(shè)S1、S2分別為△A1SA2、△MSN的面積,求 的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC的三邊所在直線的方程分別是lAB:4x-3y+10=0,lBCy=2,lCA:3x-4y=5.

(1)求∠BAC的平分線所在直線的方程;

(2)AB邊上的高所在直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某旅游愛好者計劃從3個亞洲國家和3個歐洲國家中選擇2個國家去旅游.

(Ⅰ)若從這6個國家中任選2個,求這2個國家都是亞洲國家的概率;

(Ⅱ)若從亞洲國家和歐洲國家中各任選1個,求這2個國家包括但不包括的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC三個內(nèi)角A,B,C所對的邊分別為a,b,c,若c2sinA=5sinC,(a+c)2=16+b2 , 則△ABC的面積是

查看答案和解析>>

同步練習(xí)冊答案