【題目】已知拋物線的焦點為,上一點,且.

(1)求的方程;

(2)設(shè)點上異于點的一點,直線與直線交于點,過點軸的垂線交于點,證明:直線過定點.

【答案】(1)的方程為;(2)見解析.

【解析】

(1)由拋物線的定義利用.可求,進(jìn)而求得的方程;

(2)證明:設(shè),.由題意,可設(shè)直線的方程為,代入,得.由軸及點在直線上,得,

則由,三點共線,得,

整理,得.結(jié)合韋達(dá)定理可得

. 由點的任意性,得,即可證明.

(1)解:根據(jù)題意知,,①

因為,所以.②.

聯(lián)立①②解的,.

所以的方程為.

(2)證明:設(shè),.由題意,可設(shè)直線的方程為,代入,得.

根與系數(shù)的關(guān)系.得,.③

軸及點在直線上,得,

則由,,三點共線,得,

整理,得.

將③代入上式并整理,得.

由點的任意性,得,所以.

即直線恒過定點.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】分形幾何學(xué)是一門以不規(guī)則幾何形態(tài)為研究對象的幾何學(xué).分形的外表結(jié)構(gòu)極為復(fù)雜,但其內(nèi)部卻是有規(guī)律可尋的.一個數(shù)學(xué)意義上分形的生成是基于一個不斷迭代的方程式,即一種基于遞歸的反饋系統(tǒng).下面我們用分形的方法來得到一系列圖形,如圖1,線段的長度為a,在線段上取兩個點,使得,以為一邊在線段的上方做一個正六邊形,然后去掉線段,得到圖2中的圖形;對圖2中的最上方的線段作相同的操作,得到圖3中的圖形;依此類推,我們就得到了以下一系列圖形:

記第個圖形(圖1為第1個圖形)中的所有線段長的和為,現(xiàn)給出有關(guān)數(shù)列的四個命題:

①數(shù)列是等比數(shù)列;

②數(shù)列是遞增數(shù)列;

③存在最小的正數(shù),使得對任意的正整數(shù) ,都有

④存在最大的正數(shù),使得對任意的正整數(shù),都有

其中真命題的序號是________________(請寫出所有真命題的序號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x3-3x2+1,g(x)=,若方程g[f(x)]-a=0(a>0)有6個實數(shù)根(互不相同),則實數(shù)a的取值范圍是______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】判斷下列函數(shù)的奇偶性

(1);

(2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)某大學(xué)的女生體重y(單位:kg)與身高x(單位:cm)具有線性相關(guān)關(guān)系,根據(jù)一組樣本數(shù)據(jù)(xi,yi)(i=1,2,,n),用最小二乘法建立的回歸方程為=0.85x-85.71,則下列結(jié)論中不正確的是

A. yx具有正的線性相關(guān)關(guān)系

B. 回歸直線過樣本點的中心(,

C. 若該大學(xué)某女生身高增加1cm,則其體重約增加0.85kg

D. 若該大學(xué)某女生身高為170cm,則可斷定其體重比為58.79kg

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的圖象經(jīng)過點,且在點處的切線方程為.

(1)求函數(shù)的解析式;

(2)求函數(shù)的單調(diào)區(qū)間

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,摩天輪的半徑為40米,摩天輪的軸O點距離地面的高度為45米,摩天輪勻速逆時針旋轉(zhuǎn),每6分鐘轉(zhuǎn)一圈,摩天輪上點P的起始位置在最高點處,下面的有關(guān)結(jié)論正確的有(

A.經(jīng)過3分鐘,點P首次到達(dá)最低點

B.4分鐘和第8分鐘點P距離地面一樣高

C.從第7分鐘至第10分鐘摩天輪上的點P距離地面的高度一直在降低

D.摩天輪在旋轉(zhuǎn)一周的過程中有2分鐘距離地面不低于65

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)全集為R,.

1)求

2)若,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)fnx)=xn+bx+cnZ,bcR).

1)若n=﹣1,且f11)=f1)=5,試求實數(shù)b,c的值;

2)設(shè)n2,若對任意x1,x2[11]|f2x1)﹣f2x2|≤6恒成立,求b的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案