【題目】已知點(diǎn)(1,2)是函數(shù)的圖象上一點(diǎn),數(shù)列的前項(xiàng)和是.

(1)求數(shù)列的通項(xiàng)公式;

(2)若,求數(shù)列的前n項(xiàng)和

【答案】(1)an=2n-1;(2)Tn=(n-1)2n+1.

【解析】

(1)由點(diǎn)(1,2)圖像上求出,再利用法求出

(2)利用錯位相減法求和,注意相減時項(xiàng)的符號,求和時項(xiàng)數(shù)的確定。

(1)把點(diǎn)(1,2)代入函數(shù)f(x)=axa=2,

所以數(shù)列{an}的前n項(xiàng)和為Snf(n)-1=2n-1.

當(dāng)n=1時,a1S1=1;

當(dāng)n≥2時,anSnSn-1=2n-2n-1=2n-1,對n=1時也適合,

an=2n-1.

(2)由a=2,bn=logaan+1bnn

所以anbnn·2n-1.

Tn=1·20+2·21+3·22+…+n·2n-1,①

2Tn=1·21+2·22+3·23+…+(n-1)·2n-1n·2n.②

由①-②得:-Tn=20+21+22+…+2n-1n·2n

所以Tn=(n-1)2n+1.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn),點(diǎn)P是圓C:上的任意一點(diǎn),線段PQ的垂直平分線與直線CP交于點(diǎn)M.

求點(diǎn)M的軌跡方程;

過點(diǎn)作直線與點(diǎn)M的軌跡交于點(diǎn)E,過點(diǎn)作直線與點(diǎn)M的軌跡交于點(diǎn)F不重合,且直線AE和直線BF的斜率互為相反數(shù),直線EF的斜率是否為定值,若為定值,求出直線EF的斜率;若不是定值,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某鄉(xiāng)鎮(zhèn)政府為了解決農(nóng)村教師的住房問題,計劃征用一塊土地蓋一幢建筑總面積為10000公寓樓(每層的建筑面積相同).已知士地的征用費(fèi)為,土地的征用面積為第一層的倍,經(jīng)工程技術(shù)人員核算,第一層建筑費(fèi)用為,以后每增高一層,其建筑費(fèi)用就增加,設(shè)這幢公寓樓高層數(shù)為n,總費(fèi)用為萬元.(總費(fèi)用為建筑費(fèi)用和征地費(fèi)用之和)

1)若總費(fèi)用不超過835萬元,求這幢公寓樓最高有多少層數(shù)?

2)試設(shè)計這幢公寓的樓層數(shù),使總費(fèi)用最少,并求出最少費(fèi)用.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方體,則下列四個命題:

①點(diǎn)在直線上運(yùn)動時,直線與直線所成角的大小不變

②點(diǎn)在直線上運(yùn)動時,直線與平面所成角的大小不變

③點(diǎn)在直線上運(yùn)動時,二面角的大小不變

④點(diǎn)在直線上運(yùn)動時,三棱錐的體積不變

其中的真命題是

A.①③B.③④C.①②④D.①③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知四邊形是矩形,平面,,點(diǎn)在線段上(不為端點(diǎn)),且滿足,其中.

1)若,求直線與平面所成的角的大小;

2)是否存在,使的公垂線,即同時垂直?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,圓經(jīng)過伸縮變換后得到曲線以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸,并在兩種坐標(biāo)系中取相同的單位長度,建立極坐標(biāo)系,直線的極坐標(biāo)方程為

(1)求曲線的直角坐標(biāo)方程及直線的直角坐標(biāo)方程;

(2)設(shè)點(diǎn)上一動點(diǎn),求點(diǎn)到直線的距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

(1)若在區(qū)間上不是單調(diào)函數(shù),求實(shí)數(shù)的范圍;

(2)若對任意,都有恒成立,求實(shí)數(shù)的取值范圍;

(3)當(dāng)時,設(shè),對任意給定的正實(shí)數(shù),曲線上是否存在兩點(diǎn),使得是以為坐標(biāo)原點(diǎn))為直角頂點(diǎn)的直角三角形,而且此三角形斜邊中點(diǎn)在軸上?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知直線的方程為,.

1)若直線軸、軸上的截距之和為-1,求坐標(biāo)原點(diǎn)到直線的距離;

2)若直線與直線分別相交于、兩點(diǎn),點(diǎn)、兩點(diǎn)的距離相等,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若直線軸,軸的交點(diǎn)分別為,圓以線段為直徑.

(Ⅰ)求圓的標(biāo)準(zhǔn)方程;

(Ⅱ)若直線過點(diǎn),與圓交于點(diǎn),且,求直線的方程.

查看答案和解析>>

同步練習(xí)冊答案