【題目】某工廠對一批產(chǎn)品進行了抽樣檢測.右圖是根據(jù)抽樣檢測后的產(chǎn)品凈重(單位:克)數(shù)據(jù)繪制的頻率分布直方圖,其中產(chǎn)品凈重的范圍是[96,106],樣本數(shù)據(jù)分組為[96,98),[98,100),[100,102),[102,104),[104,106],已知樣本中產(chǎn)品凈重小于100克的個數(shù)是36,則樣本中凈重大于或等于98克并且小于104克的產(chǎn)品的個數(shù)是( ).
A. 90B. 75C. 60D. 45
科目:高中數(shù)學 來源: 題型:
【題目】(1)某校夏令營有3名男同學A、B、C和3名女同學X、Y、Z,其年級情況如下表:
一年級 | 二年級 | 三年級 | |
男同學 | A | B | C |
女同學 | X | Y | Z |
現(xiàn)從這6名同學中隨機選出2人參加知識競賽(每人被選到的可能性相同).
①用表中字母列舉出所有可能的結(jié)果;
②設M為事件“選出的2人來自不同年級且恰有1名男同學和1名女同學”,求事件M發(fā)生的概率.
(2)節(jié)日前夕,小李在家門前的樹上掛了兩串彩燈.這兩串彩燈的第一次閃亮相互獨立,且都在通電后的4秒內(nèi)任一時刻等可能發(fā)生,然后每串彩燈以4秒為間隔閃亮.那么這兩串彩燈同時通電后,它們第一次閃亮的時刻相差不超過2秒的概率是多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖1,在邊長為2的菱形中,,將沿對角線折起到的位置,使平面平面,是的中點,平面,且,如圖2.
(1)求證:平面;
(2)求平面與平面所成角的余弦值;
(3)在線段上是否存在一點,使得平面?若存在,求的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列命題(1)條斜線段長相等,則他們在平面內(nèi)的射影長也相等;(2)直線不在平面內(nèi),他們在平面內(nèi)的射影是兩條平行直線,則;(3)與同一平面所成的角相等的兩條直線平行;(4)一條直線與一個平面所成的角是,那么它與平面內(nèi)任何其他直線所成的角都不小于;其中正確的命題序號是____________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓錐的側(cè)面展開圖是一個半圓.
(1)求圓錐的母線與底面所成的角;
(2)過底面中心且平行于母線的截平面,若截面與圓錐側(cè)面的交線是焦參數(shù)(焦點到準線的距離)為的拋物線,求圓錐的全面積;
(3)過底面點作垂直且于母線的截面,若截面與圓錐側(cè)面的交線是長軸為的橢圓,求橢圓的面積(橢圓號的面積)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】一個創(chuàng)業(yè)青年租用一塊邊長為4百米的等邊田地如圖養(yǎng)蜂、產(chǎn)蜜與售蜜,田地內(nèi)擬修建筆直小路MN,AP,其中M,N分別為AC,BC的中點,點P在CN上,規(guī)劃在小路MN與AP的交點O(O與M、N不重合處設立售蜜點,圖中陰影部分為蜂巢區(qū),空白部分為蜂源植物生長區(qū),A,N為出入口小路的寬度不計為節(jié)約資金,小路MO段與OP段建便道,供蜂源植物培育之用,費用忽略不計為車輛安全出入,小路AO段的建造費用為每百米5萬元,小路ON段的建造費用為每百米4萬元.
(Ⅰ)若擬修的小路AO段長為百米,求小路ON段的建造費用;
(Ⅱ)設, 求的值,使得小路AO段與ON段的建造總費用最。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某城市交通部門為了對該城市共享單車加強監(jiān)管,隨機選取了100人就該城市共享單車的推行情況進行問卷調(diào)查,并將問卷中的這100人根據(jù)其滿意度評分值(百分制)按照分成5組,制成如圖所示頻率分直方圖.
(1)求圖中x的值;
(2)求這組數(shù)據(jù)的平均數(shù)和中位數(shù);
(3)已知滿意度評分值在內(nèi)的男生數(shù)與女生數(shù)3:2,若在滿意度評分值為的人中隨機抽取2人進行座談,求2人均為男生的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的離心率為,右焦點為,左頂點為A,右頂點B在直線上.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設點P是橢圓C上異于A,B的點,直線交直線于點,當點運動時,判斷以為直徑的圓與直線PF的位置關系,并加以證明.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】圓的方程為:,為圓上任意一點,過作軸的垂線,垂足為,點在上,且.
(1)求點的軌跡的方程;
(2)過點的直線與曲線交于、兩點,點的坐標為,的面積為,求的最大值,及直線的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com