【題目】若數(shù)列滿足則稱為數(shù)列.記
(1)若為數(shù)列,且試寫出的所有可能值;
(2)若為數(shù)列,且求的最大值;
(3)對任意給定的正整數(shù)是否存在數(shù)列使得?若存在,寫出滿足條件的一個數(shù)列;若不存在,請說明理由.
【答案】(1);(2);(3)存在,見解析.
【解析】
(1)根據(jù)題意,則或,分析后可得符合條件的數(shù)列;
(2)由于由于為數(shù)列,且故n必須是不小于3的奇數(shù). 使最大的,可以讓數(shù)列先逐漸增大1,到中間位置后再逐漸減小1,由等差數(shù)列的前項和公式可得;
(3)令,則,用表示有,求出
,
是偶數(shù),,則是偶數(shù),或(),可分別求得結(jié)論.
(1)滿足條件的數(shù)列,及對應(yīng)的分別為:
(i) 0, 1, 2,1, 0. (ii) 0, 1, 0,1, 0.
(iii) 0, 1, 0,-1, 0. (iv) 0, -1, -2,-1, 0.
(v) 0, -1, 0,-1, 0 . (vi) 0, -1, 0, 1, 0.
因此,的所有可能值為:
(2) 由于為數(shù)列,且
故n必須是不小于3的奇數(shù).
于是使最大的為:
這里 并且
因此, (n為不小于3的奇數(shù))
(3)令,則于是由得
故
因為,故為偶數(shù),
所以為偶數(shù),
于是要使,必須為偶數(shù),即為4的倍數(shù),亦即
或
(i)當時,數(shù)列的項在滿足:
時,
(ii)當時,數(shù)列的項在滿足:
時,
科目:高中數(shù)學 來源: 題型:
【題目】在一個給定的正邊形的頂點中隨機地選取三個不同的頂點,任何一種選法的可能性是相等的,則正多邊形的中心位于所選三個點構(gòu)成的三角形內(nèi)部的概率為______.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)是上的偶函數(shù),對于都有成立,且,當,,且時,都有.則給出下列命題:①;②為函數(shù)圖象的一條對稱軸;③函數(shù)在上為減函數(shù);④方程在上有4個根;其中正確的命題個數(shù)為( )
A.1B.2C.3D.4
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)甲、乙兩位同學上學期間,每天7:30之前到校的概率均為.假定甲、乙兩位同學到校情況互不影響,且任一同學每天到校情況相互獨立.
(Ⅰ)用表示甲同學上學期間的三天中7:30之前到校的天數(shù),求隨機變量的分布列和數(shù)學期望;
(Ⅱ)設(shè)為事件“上學期間的三天中,甲同學在7:30之前到校的天數(shù)比乙同學在7:30之前到校的天數(shù)恰好多2”,求事件發(fā)生的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),.
(1)當時,求函數(shù)的單調(diào)區(qū)間;
(2)設(shè)函數(shù),其中是自然對數(shù)的底數(shù),判斷有無極值,有極值時求出極值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對于項數(shù)為m(且)的有窮正整數(shù)數(shù)列,記,即為中的最小值,設(shè)由組成的數(shù)列稱為的“新型數(shù)列”.
(1)若數(shù)列為2019,2020,2019,2018,2017,請寫出的“新型數(shù)列”的所有項;
(2)若數(shù)列滿足,且其對應(yīng)的“新型數(shù)列”項數(shù),求的所有項的和;
(3)若數(shù)列的各項互不相等且所有項的和等于所有項的積,求符合條件的及其對應(yīng)的“新型數(shù)列”.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列,為其前項的和,滿足.
(1)求數(shù)列的通項公式;
(2)設(shè)數(shù)列的前項和為,數(shù)列的前項和為,求證:當,時;
(3)已知當,且時有,其中,求滿足的所有的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)求在點處的切線方程;
(2)若不等式恒成立,求k的取值范圍;
(3)函數(shù),設(shè),記在上得最大值為,當最小時,求k的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對于由有限個自然數(shù)組成的集合A,定義集合S(A)={a+b|a∈A,b∈A},記集合S(A)的元素個數(shù)為d(S(A)).定義變換T,變換T將集合A變換為集合T(A)=A∪S(A).
(1)若A={0,1,2},求S(A),T(A);
(2)若集合A有n個元素,證明:“d(S(A))=2n-1”的充要條件是“集合A中的所有元素能組成公差不為0的等差數(shù)列”;
(3)若A{1,2,3,4,5,6,7,8}且{1,2,3,…,25,26}T(T(A)),求元素個數(shù)最少的集合A.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com