【題目】某城市208年抽樣100戶居民的月均用電量(單位:千瓦時(shí)),以,,,,,,分組,得到如下頻率分布表:
分組 | 頻數(shù) | 頻率 |
0.04 | ||
19 | ||
0.22 | ||
25 | 0.25 | |
15 | 0.15 | |
10 | ||
5 | 0.05 |
(1)求表中的值,并估計(jì)2018年該市居民月均用電量的中位數(shù);
(2)該城市最近十年的居民月均用電量逐年上升,以當(dāng)年居民月均用電量的中位數(shù)(單位:千瓦時(shí))作為統(tǒng)計(jì)數(shù)據(jù),下圖是部分?jǐn)?shù)據(jù)的折線圖.
由折線圖看出,可用線性回歸模型擬合與年份的關(guān)系.
①為簡化運(yùn)算,對以上數(shù)據(jù)進(jìn)行預(yù)處理,令,,請你在答題卡上完成數(shù)據(jù)預(yù)處理表;
②建立關(guān)于的線性回歸方程,預(yù)測2020年該市居民月均用電量的中位數(shù).
附:回歸直線的斜率和截距的最小二乘估計(jì)公式分別為:,.
【答案】(1),,,;中位數(shù)千瓦時(shí);(2)①見解析;②;237.2千瓦時(shí).
【解析】
(1)根據(jù)頻率等于頻數(shù)與樣本容量的比,求出.根據(jù)中位數(shù)左右兩側(cè)的頻率相等,求出中位數(shù);
(2)①根據(jù)折線圖完成數(shù)據(jù)預(yù)處理表;②根據(jù)參考公式求出關(guān)于的線性回歸方程,令,可得預(yù)測值.
(1)由已知,,同理;
,同理.
設(shè)樣本頻率分布表的中位數(shù)為,則
,解得.
由樣本估計(jì)總體,可估計(jì)2018年該市居民月均用電量的中位數(shù)千瓦時(shí).
(2)①數(shù)據(jù)預(yù)處理表如下:
0 | 2 | 4 | |||
0 | 19 | 29 |
②由①可知,,.
設(shè)關(guān)于的線性回歸方程為,則
,
且.
得.
代入,,有,
則所求關(guān)于的線性回歸方程為:,
即.
可預(yù)測該市2020年居民月均用電量的中位數(shù)為
(千瓦時(shí)).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方體ABCD﹣A1B1C1D1中,M,N,P分別是C1D1,BC,A1D1的中點(diǎn),有下列四個結(jié)論:
①AP與CM是異面直線;②AP,CM,DD1相交于一點(diǎn);③MN∥BD1;
④MN∥平面BB1D1D.
其中所有正確結(jié)論的編號是( 。
A.①④B.②④C.①④D.②③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2020年新年伊始,新型冠狀病毒來勢洶洶,疫情使得各地學(xué)生在寒假結(jié)束之后無法返校,教育部就此提出了線上教學(xué)和遠(yuǎn)程教學(xué),停課不停學(xué)的要求也得到了家長們的贊同.各地學(xué)校開展各式各樣的線上教學(xué),某地學(xué)校為了加強(qiáng)學(xué)生愛國教育,擬開設(shè)國學(xué)課,為了了解學(xué)生喜歡國學(xué)是否與性別有關(guān),該學(xué)校對100名學(xué)生進(jìn)行了問卷調(diào)查,得到如下列聯(lián)表:
喜歡國學(xué) | 不喜歡國學(xué) | 合計(jì) | |
男生 | 20 | 50 | |
女生 | 10 | ||
合計(jì) | 100 |
(1)請將上述列聯(lián)表補(bǔ)充完整,并判斷能否在犯錯誤的概率不超過0.001的前提下認(rèn)為喜歡國學(xué)與性別有關(guān)系?
(2)針對問卷調(diào)查的100名學(xué)生,學(xué)校決定從喜歡國學(xué)的人中按分層抽樣的方法隨機(jī)抽取6人成立國學(xué)宣傳組,并在這6人中任選2人作為宣傳組的組長,設(shè)這兩人中女生人數(shù)為,求的分布列和數(shù)學(xué)期望.
參考數(shù)據(jù):
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校擬從甲、乙兩名同學(xué)中選一人參加疫情知識問答競賽,于是抽取了甲、乙兩人最近同時(shí)參加校內(nèi)競賽的十次成績,將統(tǒng)計(jì)情況繪制成如圖所示的折線圖.根據(jù)該折線圖,下面結(jié)論正確的是( )
A.甲、乙成績的中位數(shù)均為7
B.乙的成績的平均分為6.8
C.甲從第四次到第六次成績的下降速率要大于乙從第四次到第五次的下降速率
D.甲的成績的方差小于乙的成績的方差
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某生鮮批發(fā)店每天從蔬菜生產(chǎn)基地以5元/千克購進(jìn)某種綠色蔬菜,售價(jià)8元/千克,若每天下午4點(diǎn)以前所購進(jìn)的綠色蔬菜沒有售完,則對未售出的綠色蔬菜降價(jià)處理,以3元/千克出售.根據(jù)經(jīng)驗(yàn),降價(jià)后能夠把剩余蔬菜全部處理完畢,且當(dāng)天不再進(jìn)貨.該生鮮批發(fā)店整理了過往30天(每天下午4點(diǎn)以前)這種綠色蔬菜的日銷售量(單位:千克)得到如下統(tǒng)計(jì)數(shù)據(jù)(視頻率為概率)(注:x,y∈N*)
每天下午4點(diǎn)前銷售量 | 350 | 400 | 450 | 500 | 550 |
天數(shù) | 3 | 9 | x | y | 2 |
(1)求在未來3天中,至少有1天下午4點(diǎn)前的銷售量不少于450千克的概率.
(2)若該生鮮批發(fā)店以當(dāng)天利潤期望值為決策依據(jù),當(dāng)購進(jìn)450千克比購進(jìn)500千克的利潤期望值大時(shí),求x的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1為某省2018年1~4月快遞業(yè)務(wù)量統(tǒng)計(jì)圖,圖2是該省2018年1~4月快遞業(yè)務(wù)收入統(tǒng)計(jì)圖,下列對統(tǒng)計(jì)圖理解錯誤的是( )
A. 2018年1~4月的業(yè)務(wù)量,3月最高,2月最低,差值接近2000萬件
B. 2018年1~4月的業(yè)務(wù)量同比增長率均超過50%,在3月底最高
C. 從兩圖來看,2018年1~4月中的同一個月的快遞業(yè)務(wù)量與收入的同比增長率并不完全一致
D. 從1~4月來看,該省在2018年快遞業(yè)務(wù)收入同比增長率逐月增長
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)是R上的奇函數(shù)且單調(diào)遞增,則下列函數(shù)是偶函數(shù)且在(0,+∞)上單調(diào)遞增的有( 。
①y=|f(x)|;
②y=f(x2+x);
③y=f(|x|);
④y=ef(x)+e﹣f(x).
A.①②③B.①③④C.②③④D.①②④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】己知是各項(xiàng)都為正數(shù)的數(shù)列,其前n項(xiàng)和為,且.
(1)求證:為等差數(shù)列;
(2)設(shè),求的前n項(xiàng)和;
(3)求集合.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com