【題目】在某企業(yè)中隨機抽取了5名員工測試他們的藝術愛好指數(shù)和創(chuàng)新靈感指數(shù),統(tǒng)計結(jié)果如下表(注:指數(shù)值越高素質(zhì)越優(yōu)秀):

1)求創(chuàng)新靈感指數(shù)關于藝術愛好指數(shù)的線性回歸方程;

2)企業(yè)為提高員工的藝術愛好指數(shù),要求員工選擇音樂和繪畫中的一種進行培訓,培訓音樂次數(shù)對藝術愛好指數(shù)的提高量為,培訓繪畫次數(shù)對藝術愛好指數(shù)的提高量為,其中為參加培訓的某員工已達到的藝術愛好指數(shù).藝術愛好指數(shù)已達到3的員工甲選擇參加音樂培訓,藝術愛好指數(shù)已達到4的員工乙選擇參加繪畫培訓,在他們都培訓了20次后,估計誰的創(chuàng)新靈感指數(shù)更高?

參考公式:回歸方程中,,.

參考數(shù)據(jù):

【答案】12)培訓后乙的創(chuàng)新靈感指數(shù)更高

【解析】

1)先求得,再根據(jù)提供的數(shù)據(jù),求得,寫出回歸直線方程.

2)根據(jù)培訓音樂次數(shù)對藝術愛好指數(shù)的提高量為,培訓繪畫次數(shù)對藝術愛好指數(shù)的提高量為,分別得到員工甲經(jīng)過20次的培訓后,他們的藝術愛好指數(shù),再估計他們的創(chuàng)新靈感指數(shù),比較即可.

1)設,有,

.

2)員工甲經(jīng)過20次的培訓后,

估計他的藝術愛好指數(shù)將達到,

因此估計他的創(chuàng)新靈感指數(shù)為.

員工乙經(jīng)過20次的培訓后,

估計他的藝術愛好指數(shù)將達到,

因此估計他的創(chuàng)新靈感指數(shù)為.

由于,故培訓后乙的創(chuàng)新靈感指數(shù)更高.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,以等腰直角三角形ABC的斜邊BC上的高AD為折痕,把ABDACD折成互相垂直的兩個平面后,某學生得出下列四個結(jié)論:

BDAC

②△BAC是等邊三角形;

③三棱錐DABC是正三棱錐;

④平面ADC⊥平面ABC.

其中正確的是(

A.①②④B.①②③

C.②③④D.①③④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】,其中.

(1)當q=1時,化簡:;

(2)當q=n時,記,試比較的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)的定義域為[-1,5],部分對應值如下表, 的導函數(shù)的圖象如圖所示,下列關于的命題:

-1

0

4

5

1

2

2

1

①函數(shù)的極大值點為0,4;

②函數(shù)在[0,2]上是減函數(shù);

③如果當時, 的最大值是2,那么t的最大值為4;

④當1<a<2時,函數(shù)有4個零點.

其中正確命題的序號是__________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在多面體中,四邊形為矩形,直線與平面所成的角為,,.

(1)求證:直線平面;

(2)點在線段上,且,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,過點的直線的參數(shù)方程為為參數(shù)),以坐標原點為極點,以軸正半軸為極軸建立極坐標系,曲線的極坐標方程為,曲線的極坐標方程為.

(1)若點的直角坐標為,求直線及曲線的直角坐標方程;

(2)若點上,直線交于兩點,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某市十所重點中學進行高三聯(lián)考,共有5000名考生,為了了解數(shù)學學科的學習情況,現(xiàn)從中隨機抽出若干名學生在這次測試中的數(shù)學成績,制成如下頻率分布表:

分組

頻數(shù)

頻率

36

12

合計

1)根據(jù)上面頻率分布表,推出①,②,③,④處的數(shù)值分別為 , , ;

2)在所給的坐標系中畫出區(qū)間上的頻率分布直方圖;

3)根據(jù)題中信息估計總體:

i120分及以上的學生數(shù);

ii)平均分;

iii)成績落在中的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】101日,某品牌的兩款最新手機(記為型號,型號)同時投放市場,手機廠商為了解這兩款手機的銷售情況,在101日當天,隨機調(diào)查了5個手機店中這兩款手機的銷量(單位:部),得到下表:

手機店

型號手機銷量

6

6

13

8

11

型號手機銷量

12

9

13

6

4

(Ⅰ)若在101日當天,從,這兩個手機店售出的新款手機中各隨機抽取1部,求抽取的2部手機中至少有一部為型號手機的概率;

(Ⅱ)現(xiàn)從這5個手機店中任選3個舉行促銷活動,用表示其中型號手機銷量超過型號手機銷量的手機店的個數(shù),求隨機變量的分布列和數(shù)學期望;

(III)經(jīng)測算,型號手機的銷售成本(百元)與銷量(部)滿足關系.若表中型號手機銷量的方差,試給出表中5個手機店的型號手機銷售成本的方差的值.(用表示,結(jié)論不要求證明)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】求適合下列條件的雙曲線的標準方程.

1)焦點在x軸上,實軸長10,虛軸長8.

2)焦點在y軸上,焦距是10,虛軸長8.

3)離心率,經(jīng)過點.

查看答案和解析>>

同步練習冊答案