設P1(x1,y1),P1(x2,y2),…,Pn(xn,yn)(n≥3,n∈N)是二次曲線C上的點,且a1=|OP1|2,a2=|OP2|2,…,an=|OPn|2構成了一個公差為d(d≠0)的等差數(shù)列,其中O是坐標原點.記Sn=a1+a2+…+an
(1)若C的方程為
x2
100
+
y2
25
=1,n=3.點P1(10,0)及S3=255,求點P3的坐標;(只需寫出一個)
(2)若C的方程為
x2
a2
+
y2
b2
=1
(a>b>0).點P1(a,0),對于給定的自然數(shù)n,當公差d變化時,求Sn的最小值;
(3)請選定一條除橢圓外的二次曲線C及C上的一點P1,對于給定的自然數(shù)n,寫出符合條件的點P1,P2,…Pn存在的充要條件,并說明理由.
分析:(1)依題意可分別求得a1和a3,進而把橢圓方程和圓的方程聯(lián)立求得交點即P3的坐標.
(2)根據(jù)原點O到二次曲線C:
x2
a2
+
y2
b2
=1
(a>b>0)上各點的最小距離為b,最大距離為a.根據(jù)a1=a2,判斷d<0,進而根據(jù)an≥b2,求得
b2-a2
n-1
≤d,進而判斷Sn在[
b2-a2
n-1
,0)上遞增,進而求得Sn的最小值.
(3)點P1(a,0),則對于給定的n,點P1,P2,Pn存在的充要條件是d>0.根據(jù)雙曲線的性質可知原點O到雙曲線C上各點的距離h的范圍,進而根據(jù)|OP1|=a2推斷點P1,P2,Pn存在當且僅當|OPn|2>|OP1|2符合.
解答:解:(1)a1=|OP1|2=100,由S3=
3
2
(a1+a3)=255,得a3=|OP3|3=70.
x2
100
+
y2
25
=1
x2+y2=70
,得
x2=60
y2=10
,
∴點P3的坐標可以為(2
15
10
).

(2)原點O到二次曲線C:
x2
a2
+
y2
b2
=1
(a>b>0)上各點的最小距離為b,最大距離為a.
∵a1=|OP1|2=a2,
∴d<0,且an=|OPn|2=a2+(n-1)d≥b2,
b2-a2
n-1
≤d<0.∵n≥3,
n(n-1)
2
>0
∴Sn=na2+
n(n-1)
2
d在[
b2-a2
n-1
,0)上遞增,
故Sn的最小值為na2+
n(n-1)
2
b2-a2
n-1
=
n(a2+b2)
2


(3)若雙曲線C:
x2
a2
-
y2
b2
=1,點P1(a,0),
則對于給定的n,點P1,P2,Pn存在的充要條件是d>0.
∵原點O到雙曲線C上各點的距離h∈[|a|,+∞),且|OP1|=a2,
∴點P1,P2,Pn存在當且僅當|OPn|2>|OP1|2,即d>0.
點評:本題主要考查了等差數(shù)列的性質.涉及了圓錐曲線和函數(shù)的知識,考查了學生綜合分析問題和基本的運算能力.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知f是直角坐標平面xOy到自身的一個映射,點P在映射f下的象為點Q,記作Q=f(P).設P1(x1,y1),P2=f(P1),P3=f(P2),…,Pn=f(Pn-1),….如果存在一個圓,使所有的點Pn(xn,yn)(n∈N*)都在這個圓內(nèi)或圓上,那么稱這個圓為點Pn(xn,yn)的一個收斂圓.特別地,當P1=f(P1)時,則稱點P1為映射f下的不動點.若點P(x,y)在映射f下的象為點Q(-x+1,
12
y)

(Ⅰ)求映射f下不動點的坐標;
(Ⅱ)若P1的坐標為(2,2),求證:點Pn(xn,yn)(n∈N*)存在一個半徑為2的收斂圓.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設P1(x1,y1)、P2(x2,y2)是函數(shù)f(x)=
2x
2x+
2
圖象上的兩點,且
OP
=
1
2
(
OP1
+
OP2
)
,點P的橫坐標為
1
2

(1)求證:P點的縱坐標為定值,并求出這個定值;
(2)若Sn=
n
i=1
f(
i
n
),n∈N*
,求Sn;
(3)記Tn為數(shù)列{
1
(Sn+
2
)(Sn+1+
2
)
}
的前n項和,若Tn<a(Sn+1+
2
)
對一切n∈N*都成立,試求a的取值范圍.
an-1+1=
an
n
;
(1+
1
a1
)(1+
1
a2
)(1+
1
a3
)…(1+
1
an
)≤3-
1
n

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設P1(x1,y1),P1(x2,y2),…,Pn(xn,yn)(n≥3,n∈N) 是二次曲線C上的點,且a1=|OP1|2,a2=|OP2|2,…,an=|OPn|2構成了一個公差為d(d≠0) 的等差數(shù)列,其中O是坐標原點.記Sn=a1+a2+…+an
(1)若C的方程為
x2
9
-y2=1,n=3.點P1(3,0) 及S3=162,求點P3的坐標;(只需寫出一個)
(2)若C的方程為y2=2px(p≠0).點P1(0,0),對于給定的自然數(shù)n,證明:(x1+p)2,(x2+p)2,…,(xn+p)2成等差數(shù)列;
(3)若C的方程為
x2
a2
+
y2
b2
=1
(a>b>0).點P1(a,0),對于給定的自然數(shù)n,當公差d變化時,求Sn的最小值.
符號意義 本試卷所用符號 等同于《實驗教材》符號
向量坐標
a
={x,y}
a
=(x,y)
正切 tg tan

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
a•2x
2x+
2
的圖象過點(0,
2
-1)

(1)求f(x)的解析式;
(2)設P1(x1,y1),P2(x2,y2)為y=f(x)的圖象上兩個不同點,又點P(xP,yP)滿足:
OP
=
1
2
(
OP1
+
OP2
)
,其中O為坐標原點.試問:當xP=
1
2
時,yP是否為定值?若是,求出yP的值,若不是,請說明理由.

查看答案和解析>>

同步練習冊答案