精英家教網 > 高中數學 > 題目詳情

【題目】選修4—4:坐標系與參數方程

點P是曲線C1:(x-2)2+y2=4上的動點,以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系,以極點O為中心,將點P逆時針旋轉90°得到點Q,設點Q的軌跡為曲線C2

(Ⅰ)求曲線C1,C2的極坐標方程;

(Ⅱ)射線(ρ>0)與曲線C1,C2分別交于A,B兩點,設定點M(2,0),求△MAB的面積.

【答案】(Ⅰ),;(Ⅱ)

【解析】

(Ⅰ)利用極坐標與直角坐標方程的互化可得曲線的極坐標方程.設Q),則,代入即可得出曲線C2的極坐標方程.

(Ⅱ)M到射線的距離為,,由面積公式即可得出面積.

(Ⅰ)曲線的圓心為(2,0),半徑為2,把互化公式代入可得:曲線C1的極坐標方程為=4cosθ.

,則,則有

所以,曲線的極坐標方程為

(Ⅱ)到射線的距離為

,

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知拋物線C的頂點在原點,對稱軸是y軸,直線與拋物線交于不同的兩點,線段中點的縱坐標為2,且.

1)求拋物線的標準方程;

2)設拋物線的焦點為,若直線經過焦點,求直線的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.其中

(1)當時,求函數的單調區(qū)間;

(2)若對于任意,都有恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓

1)若過點的直線l與橢圓C恒有公共點,求實數a的取值范圍;

2)若存在以點B02)為圓心的圓與橢圓C有四個公共點,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某商店為迎接端午節(jié),推出兩款粽子:花生粽和肉粽.為調查這兩款粽子的受歡迎程度,店員連續(xù)10天記錄了這兩種粽子的銷售量,如下表表示(其中銷售單位:個)

天數

銷售量

天數

1

2

3

4

5

6

7

8

9

10

11

花生粽

103

93

98

93

106

86

87

94

91

99

100

肉粽

88

97

98

95

101

98

103

106

103

111

100

1)根據兩組數據完成下面莖葉圖:

2)統(tǒng)計學知識,請評述哪款粽子更受歡迎;

3)求肉粽銷售量y關于天數t的線性回歸方程,并預估第15天肉粽的銷售量(回歸方程系數精確到0.1

參考數據:,參考公式:

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知點,橢圓的離心率為是橢圓E的右焦點,直線AF的斜率為2,O為坐標原點.

1)求E的方程;

2)設過點且斜率為k的直線與橢圓E交于不同的兩MN,且,求k的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在四棱錐中,底面是直角梯形,側棱底面,垂直于,為棱上的點,.

1)若為棱的中點,求證:平面;

2)當時,求平面與平面所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系xOy中,雙曲線經過點,其中一條近線的方程為,橢圓與雙曲線有相同的焦點橢圓的左焦點,左頂點和上頂點分別為F,AB,且點F到直線AB的距離為

求雙曲線的方程;

求橢圓的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知直線的參數方程為為參數),以坐標原點為極點, 軸的非負半軸為極軸建立極坐標系,圓的極坐標方程為,直線與圓交于 兩點.

(1)求圓的直角坐標方程及弦的長;

(2)動點在圓上(不與, 重合),試求的面積的最大值.

查看答案和解析>>

同步練習冊答案