【題目】將函數(shù)fx)=cos2x)的圖象向左平移個單位長度后,得到函數(shù)gx)的圖象,則下列結(jié)論中正確的是_____.(填所有正確結(jié)論的序號)

gx)的最小正周期為4π

gx)在區(qū)間[0,]上單調(diào)遞減;

gx)圖象的一條對稱軸為x;

gx)圖象的一個對稱中心為(0).

【答案】②④.

【解析】

利用函數(shù)的圖象的變換規(guī)律求得的解析式,再利用三角函數(shù)的周期性、單調(diào)性、圖象的對稱性,即可求解,得到答案.

由題意,將函數(shù)的圖象向左平移個單位長度后,

得到的圖象,

則函數(shù)的最小正周期為,所以①錯誤的;

當(dāng)時,,故在區(qū)間單調(diào)遞減,

所以②正確;

當(dāng)時,,則不是函數(shù)的對稱軸,所以③錯誤;

當(dāng)時,,則是函數(shù)的對稱中心,所以④正確;

所以結(jié)論正確的有②④.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,是一個算法流程圖,當(dāng)輸入的x=5時,那么運行算法流程圖輸出的結(jié)果是(
A.10
B.20
C.25
D.35

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)為二次函數(shù),且f(x-1)+f(x)=2x2+4.

(1)求f(x)的解析式;

(2)當(dāng)x∈[t,t+2],t∈R時,求函數(shù)f(x)的最小值(用t表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知線段上有個確定的點(包括端點).現(xiàn)對這些點進行往返標(biāo)數(shù)(從…進行標(biāo)數(shù),遇到同方向點不夠數(shù)時就“調(diào)頭”往回數(shù)).如圖:在點上標(biāo),稱為點,然后從點開始數(shù)到第二個數(shù),標(biāo)上,稱為點,再從點開始數(shù)到第三個數(shù),標(biāo)上,稱為點(標(biāo)上數(shù)的點稱為點),……,這樣一直繼續(xù)下去,直到,,,…,都被標(biāo)記到點上,則點上的所有標(biāo)記的數(shù)中,最小的是_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù) f(x)=|x+2|﹣|x﹣3|﹣a

Ⅰ)當(dāng) a=1 求函數(shù) f(x)的最大值;

Ⅱ)若 f(x)≤ 對任意 xR 恒成立,求實數(shù) a 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】均為非負整數(shù),在做的加法時各位均不進位(例如,),則稱為“簡單的”有序?qū),?/span>稱為有序數(shù)對的值,那么值為2964的“簡單的”有序?qū)Φ膫數(shù)是( )

A. 525 B. 1050 C. 432 D. 864

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】李克強總理在2018年政府工作報告指出,要加快建設(shè)創(chuàng)新型國家,把握世界新一輪科技革命和產(chǎn)業(yè)變革大勢,深入實施創(chuàng)新驅(qū)動發(fā)展戰(zhàn)略,不斷增強經(jīng)濟創(chuàng)新力和競爭力.某手機生產(chǎn)企業(yè)積極響應(yīng)政府號召,大力研發(fā)新產(chǎn)品,爭創(chuàng)世界名牌.為了對研發(fā)的一批最新款手機進行合理定價,將該款手機按事先擬定的價格進行試銷,得到一組銷售數(shù)據(jù),如表所示:

單價(千元)

銷量(百件)

已知.

1)若變量具有線性相關(guān)關(guān)系,求產(chǎn)品銷量(百件)關(guān)于試銷單價(千元)的線性回歸方程;

2)用(1)中所求的線性回歸方程得到與對應(yīng)的產(chǎn)品銷量的估計值.

(參考公式:線性回歸方程中的估計值分別為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地區(qū)有小學(xué)21所,中學(xué)14所,現(xiàn)采用分層抽樣的方法從這些學(xué)校中抽取5所學(xué)校,對學(xué)生進行視力檢查.

(1)求應(yīng)從小學(xué)、中學(xué)中分別抽取的學(xué)校數(shù)目;

(2)若從抽取的5所學(xué)校中抽取2所學(xué)校作進一步數(shù)據(jù)

①列出所有可能抽取的結(jié)果;

②求抽取的2所學(xué)校至少有一所中學(xué)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知:已知函數(shù)

Ⅰ)若曲線y=f(x)在點P(2,f(2))處的切線的斜率為﹣6,求實數(shù)a;

Ⅱ)若a=1,求f(x)的極值;

查看答案和解析>>

同步練習(xí)冊答案