【題目】設(shè)函數(shù) f(x)=|x+2|﹣|x﹣3|﹣a
(Ⅰ)當(dāng) a=1 時,求函數(shù) f(x)的最大值;
(Ⅱ)若 f(x)≤ 對任意 x∈R 恒成立,求實數(shù) a 的取值范圍.
【答案】 (1)4,(2) (0,1]∪[4,+∞).
【解析】分析:(1)運用絕對值不等式的性質(zhì),可得,即可得到f(x)的最大值;
(2)f(x)≤ 對任意 x∈R 恒成立,即為,解不等式可得a 的取值范圍.
詳解:(Ⅰ)當(dāng) a=1 時,f(x)=|x+2|﹣|x﹣3|﹣1, 由|x+2|﹣|x﹣3|≤|(x+2)﹣(x﹣3)|=5,
故 f(x)≤4,
所以,當(dāng) x≥3 時,f(x)取得最大值,且為 4;
(Ⅱ)f(x)≤對任意 x∈R 恒成立,即為
f(x)max=5﹣a≤,
即為即有, 即為 a≥4 或 0<a≤1.
即有 a 的取值范圍是(0,1]∪[4,+∞).
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正△ABC內(nèi)接于半徑為2的圓O,點P是圓O上的一個動點,則 的取值范圍是( )
A.[0,6]
B.[﹣2,6]
C.[0,2]
D.[﹣2,2]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2﹣2x+alnx(a>0).
(Ⅰ)當(dāng)a=2時,試求函數(shù)圖線過點(1,f(1))的切線方程;
(Ⅱ)當(dāng)a=1時,若關(guān)于x的方程f(x)=x+b有唯一實數(shù)解,試求實數(shù)b的取值范圍;
(Ⅲ)若函數(shù)f(x)有兩個極值點x1、x2(x1<x2),且不等式f(x1)≥mx2恒成立,試求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“ALS冰桶挑戰(zhàn)賽”是一項社交網(wǎng)絡(luò)上發(fā)起的籌款活動,活動規(guī)定:被邀請者要么在24小時內(nèi)接受挑戰(zhàn),要么選擇為慈善機構(gòu)捐款(不接受挑戰(zhàn)),并且不能重復(fù)參加該活動.若被邀請者接受挑戰(zhàn),則他需在網(wǎng)絡(luò)上發(fā)布自己被冰水澆遍全身的視頻內(nèi)容,然后便可以邀請另外3個人參與這項活動.假設(shè)每個人接受挑戰(zhàn)與不接受挑戰(zhàn)是等可能的,且互不影響.
(1)若某參與者接受挑戰(zhàn)后,對其他3個人發(fā)出邀請,則這3個人中至少有2個人接受挑戰(zhàn)的概率是多少?
(2)為了解冰桶挑戰(zhàn)賽與受邀請的性別是否有關(guān),某調(diào)查機構(gòu)進(jìn)行了隨機抽樣調(diào)查,調(diào)查得到如下列聯(lián)表:
接受挑戰(zhàn) | 不接受挑戰(zhàn) | 合計 | |
男性 | 45 | 15 | 60 |
女性 | 25 | 15 | 40 |
合計 | 70 | 30 | 100 |
根據(jù)表中數(shù)據(jù),能否在犯錯誤的概率不超過0.1的前提下認(rèn)為“冰桶挑戰(zhàn)賽與受邀請者的性別有關(guān)”?
附:
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為加快新能源汽車產(chǎn)業(yè)發(fā)展,推進(jìn)節(jié)能減排,國家對消費者購買新能源汽車給予補貼,其中對純電動乘用車補貼標(biāo)準(zhǔn)如表:
新能源汽車補貼標(biāo)準(zhǔn) | |||
車輛類型 | 續(xù)駛里程R(公里) | ||
100≤R<180 | 180≤R<280 | <280 | |
純電動乘用車 | 2.5萬元/輛 | 4萬元/輛 | 6萬元/輛 |
某校研究性學(xué)習(xí)小組,從汽車市場上隨機選取了M輛純電動乘用車,根據(jù)其續(xù)駛里程R(單次充電后能行駛的最大里程)作出了頻率與頻數(shù)的統(tǒng)計表:
分組 | 頻數(shù) | 頻率 |
100≤R<180 | 3 | 0.3 |
180≤R<280 | 6 | x |
R≥280 | y | z |
合計 | M | 1 |
(1)求x、y、z、M的值;
(2)若從這M輛純電動乘用車任選3輛,求選到的3輛車?yán)m(xù)駛里程都不低于180公里的概率;
(3)如果以頻率作為概率,若某家庭在某汽車銷售公司購買了2輛純電動乘用車,設(shè)該家庭獲得的補貼為X(單位:萬元),求X的分布列和數(shù)學(xué)期望值E(X).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將函數(shù)f(x)=cos(2x)的圖象向左平移個單位長度后,得到函數(shù)g(x)的圖象,則下列結(jié)論中正確的是_____.(填所有正確結(jié)論的序號)
①g(x)的最小正周期為4π;
②g(x)在區(qū)間[0,]上單調(diào)遞減;
③g(x)圖象的一條對稱軸為x;
④g(x)圖象的一個對稱中心為(,0).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為響應(yīng)國家“精準(zhǔn)扶貧、精準(zhǔn)脫貧”的號召,某貧困縣在精準(zhǔn)推進(jìn)上下實功,在在精準(zhǔn)落實上見實效現(xiàn)從全縣扶貧對象中隨機抽取人對扶貧工作的滿意度進(jìn)行調(diào)查,以莖葉圖中記錄了他們對扶貧工作滿意度的分?jǐn)?shù)(滿分分)如圖所示,已知圖中的平均數(shù)與中位數(shù)相同.現(xiàn)將滿意度分為“基本滿意”(分?jǐn)?shù)低于平均分)、“滿意”(分?jǐn)?shù)不低于平均分且低于分)和“很滿意”(分?jǐn)?shù)不低于分)三個級別.
(1)求莖葉圖中數(shù)據(jù)的平均數(shù)和的值;
(2)從“滿意”和“很滿意”的人中隨機抽取人,求至少有人是“很滿意”的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知圓的方程為,過點的直線與圓交于兩點,.
(1)若,求直線的方程;
(2)若直線與軸交于點,設(shè),,,R,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,五面體ABCDE中,四邊形ABDE是菱形,△ABC是邊長為2的正三角形,∠DBA=60°, .
(1)證明:DC⊥AB;
(2)若點C在平面ABDE內(nèi)的射影H,求CH與平面BCD所成的角的正弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com