【題目】已知函數(shù),且.
(1)求函數(shù)的極值;
(2)當時,證明:.
【答案】(1)有極大值,函數(shù)有極小值;(2)證明見解析.
【解析】試題分析:(1)求極值,可先求得導數(shù),然后通過解不等式確定增區(qū)間,解不等式確定減區(qū)間,則可得極大值和極小值;(2)要證明此不等式,我們首先研究不等式左邊的函數(shù),記,求出其導數(shù),可知在上單調遞增,在上單調遞減,,這是時最小值,,這是時的最大值,因此要證明題中不等式,可分類,和分別證明.
試題解析:(1)依題意,,
故,
令,則或; 令,則,
故當時,函數(shù)有極大值,當時,函數(shù)有極小值.
(2) 由(1)知,令,
則,
可知在上單調遞增,在上單調遞減,令.
① 當時,,所以函數(shù)的圖象在圖象的上方.
② 當時,函數(shù)單調遞減,所以其最小值為最大值為2,而,所以函數(shù)的圖象也在圖象的上方.
綜上可知,當時,
科目:高中數(shù)學 來源: 題型:
【題目】已知圓,直線被圓所截得的弦的中點為.
(1)求直線的方程;
(2)若直線與圓相交, 求的取值范圍;
(3)是否存在常數(shù),使得直線被圓所截得的弦中點落在直線上?若存在, 求出的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】用反證法證明命題“若直線AB、CD是異面直線,則直線AC、BD也是異面直線”的過程歸納為以下三個步驟:
①則A、B、C、D四點共面,所以AB、CD共面,這與AB、CD是異面直線矛盾;
②所以假設錯誤,即直線AC、BD也是異面直線;
③假設直線AC、BD是共面直線.
則正確的序號順序為______________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】函數(shù)
(1)當時,求函數(shù)的定義域;
(2)是否存在實數(shù),使函數(shù)在遞減,并且最大值為1,若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=2x-.
(1)若f(x)=2,求x的值;
(2)若2tf(2t)+mf(t)≥0對于t∈[1,2]恒成立,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列滿足,是數(shù)列的前項的和.
(1)若數(shù)列為等差數(shù)列.
①求數(shù)列的通項;
②若數(shù)列滿足,數(shù)列滿足,試比較數(shù)列前項和與前項和的大;
(2)若對任意恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)當時,恒成立,求實數(shù)的取值范圍;
(2)是否存在整數(shù),使得關于的不等式的解集為?若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設是實數(shù),,
(1)若函數(shù)為奇函數(shù),求的值;
(2)試用定義證明:對于任意,在上為單調遞增函數(shù);
(3)若函數(shù)為奇函數(shù),且不等式對任意恒成立,求實數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】從一箱產品中隨機地抽取一件,設事件A={抽到一等品},事件B={抽到二等品},事件C={抽到三等品},且已知P(A)=0.65,P(B)=0.2,P(C)=0.1.則事件“抽到的是二等品或三等品”的概率為( )
A. 0.7 B. 0.65
C. 0.35 D. 0.3
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com