已知雙曲線
的右焦點為
,則該雙曲線的漸近線方程為( )
試題分析:∵雙曲線
的右焦點為
,∴9+a=13,∴a=4,,∴該雙曲線的漸近線方程為
,故選A
點評:若雙曲線方程為-=1(a>0,b>0),則漸近線方程的求法是令-=0,即兩條漸近線方程為±=0;若雙曲線方程為-=1(a>0,b>0),則漸近線方程的求法是令-=0,即兩條漸近線方程為±=0
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
(本題滿分12分)
在平面直角坐標系xOy中,拋物線C的頂點在原點,經(jīng)過點A(2,2),其焦點F在x軸上.
(1)求拋物線C的標準方程;
(2)設直線l是拋物線的準線,求證:以AB為直徑的圓與準線l相切.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知圓
O:
和定點
A(2,1),由圓
O外一點
向圓
O引切線
PQ,切點為
Q,且滿足
(1) 求實數(shù)
a、
b間滿足的等量關系;
(2) 若以
P為圓心所作的圓
P與圓
O有公共點,試求半徑取最小值時圓
P的方程.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,已知拋物線
上橫坐標為4的點到焦點的距離為5.
(Ⅰ)求拋物線C的方程;
(Ⅱ)設直線
與拋物線C交于兩點
,
,且
(a為正常數(shù)).過弦AB的中點M作平行于x軸的直線交拋物線C于點D,連結AD、BD得到
.
(i)求實數(shù)a,b,k滿足的等量關系;
(ii)
的面積是否為定值?若為定值,求出此定值;若不是定值,請說明理由.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
過橢圓
的左焦點作直線交橢圓于
、
兩點,若存在直線使坐標原點
恰好在以
為直徑的圓上,則橢圓的離心率取值范圍是
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知曲線
(a>0,b>0)的兩個焦點為
,若P為其上一點,
, 則雙曲線離心率的取值范圍為( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
若拋物線
的焦點與雙曲線
的左焦點重合,則實數(shù)
=
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
橢圓
的左、右焦點為
、
,直線x=m過
且與橢圓相交于A,B兩點,則
的面積等于
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
橢圓
與圓
(
為橢圓半焦距)有四個不同交點,則離心率的取值范圍是 ( )
查看答案和解析>>