【題目】正方體ABCD﹣A1B1C1D1的棱長為1,在正方體表面上與點(diǎn)A距離是 的點(diǎn)形成一條曲線,這條曲線的長度是(

A.
B.
C.
D.

【答案】D
【解析】解:由題意,此問題的實(shí)質(zhì)是以A為球心、 為半徑的球在正方體ABCD﹣A1B1C1D1各個(gè)面上交線的長度計(jì)算,
正方體的各個(gè)面根據(jù)與球心位置關(guān)系分成兩類:ABCD、AA1DD1、AA1BB1為過球心的截面,截痕為大圓弧,
各弧圓心角為 、A1B1C1D1、B1BCC1、D1DCC1為與球心距離為1的截面,
截痕為小圓弧,由于截面圓半徑為r= ,故各段弧圓心角為
∴這條曲線長度為3 +3 =
故選D.
【考點(diǎn)精析】利用棱柱的結(jié)構(gòu)特征對題目進(jìn)行判斷即可得到答案,需要熟知兩底面是對應(yīng)邊平行的全等多邊形;側(cè)面、對角面都是平行四邊形;側(cè)棱平行且相等;平行于底面的截面是與底面全等的多邊形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,A= ,cosB=
(1)求cosC;
(2)設(shè)BC= ,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】△ABC的內(nèi)角A、B、C的對邊分別為a、b、c.己知c= asinC﹣ccosA.
(1)求A;
(2)若a=2,△ABC的面積為 ,求b,c.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在長方形ABCD中,AB= ,BC=1,E為線段DC上一動(dòng)點(diǎn),現(xiàn)將△AED沿AE折起,使點(diǎn)D在面ABC上的射影K在直線AE上,當(dāng)E從D運(yùn)動(dòng)到C,則K所形成軌跡的長度為(

A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓C經(jīng)過原點(diǎn)O,與x軸另一交點(diǎn)的橫坐標(biāo)為4,與y軸另一交點(diǎn)的縱坐標(biāo)為2,
(1)求圓C的方程;
(2)已知點(diǎn)B的坐標(biāo)為(0,2),設(shè)P,Q分別是直線l:x+y+2=0和圓C上的動(dòng)點(diǎn),求|PB|+|PQ|的最小值及此時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知不交于同一點(diǎn)的三條直線l1:4x+y﹣4=0,l2:mx+y=0,l3:x﹣my﹣4=0
(1)當(dāng)這三條直線不能圍成三角形時(shí),求實(shí)數(shù)m的值.
(2)當(dāng)l3與l1 , l2都垂直時(shí),求兩垂足間的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C的焦點(diǎn)在x軸上,離心率等于 ,且過點(diǎn)(1, ). (Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)過橢圓C的右焦點(diǎn)F作直線l交橢圓C于A,B兩點(diǎn),交y軸于M點(diǎn),若 1 2 ,求證:λ12為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ax2+2x﹣2﹣a(a≤0),
(1)若a=﹣1,求函數(shù)的零點(diǎn);
(2)若函數(shù)在區(qū)間(0,1]上恰有一個(gè)零點(diǎn),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= +log2x.
(1)求f(2),f( ),f(4),f( )的值,并計(jì)算f(2)+f( ),f(4)+f( );
(2)求f(1)+f(2)+f(3)+…+f(2016)+f( )+f( )+…f( )的值.

查看答案和解析>>

同步練習(xí)冊答案