求證:(1).
(2)已知,求證.

(1)利用二倍角公式和兩角差的正弦公式即可證明
(2)用分析法和直接法證明均可.

解析試題分析:(1)  
    5分
所以原式成立.        6分
(2)解法1 (分析法)因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/b5/a/1r5zw3.png" style="vertical-align:middle;" />,所以從而.
另一方面,要證,只要證.
即證即證.
可得成立,于是命題成立。12分
解法2(直接證明)由所以.
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/bf/0/1gxtw2.png" style="vertical-align:middle;" />
所以.      12分
考點(diǎn):本小題主要考查直接證明和間接證明的應(yīng)用,以及三角函數(shù)公式的應(yīng)用.
點(diǎn)評(píng):用分析法證明問(wèn)題時(shí),要嚴(yán)格按照分析法的步驟進(jìn)行,有關(guān)三角函數(shù)問(wèn)題,要靈活應(yīng)用三角函數(shù)中的公式,并注意各自的適用條件.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)。
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)在△ABC中,若A為銳角,且=1,BC=2,B=,求AC邊的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù),
(1)求的值;
(2)設(shè),,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在△ABC中角,A,B,C所對(duì)的邊分別為a,b,c,向量m=(cos,1),n=(一l,sin(A+B)),且m⊥n.
( I)求角C的大;
(Ⅱ)若·,且a+b =4,求c.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)
(I)若的最大值和最小值;
(II)若的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知,
求(Ⅰ)的值;(Ⅱ)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題

△ABC中,若,則△ABC的形狀為(    ).

A.直角三角形B.等腰三角形C.等邊三角形D.銳角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)已知是三角形三內(nèi)角,向量,且[.Com]
(1)求角;        (2)若,求

查看答案和解析>>

同步練習(xí)冊(cè)答案